Citation: | DUAN Hao, ZHANG Meng, WANG Jin-hua, ZHANG Feng-qi, ZENG Ke. Performance prediction of hydrogen enriched compressed natural gas engine based on IMPSO-BPNN[J]. Journal of Traffic and Transportation Engineering, 2024, 24(4): 117-128. doi: 10.19818/j.cnki.1671-1637.2024.04.009 |
[1] |
GANDHIDASAN P, ERTAS A, ANDERSON E E. Review of methanol and compressed natural gas (CNG) asalternative for transportation fuels[J]. Journal of Energy Resources Technology, 1991, 113(2): 101-107. doi: 10.1115/1.2905782
|
[2] |
KHAN M I, YASMEEN T, KHAN M I, et al. Research progress in the development of natural gas as fuel for road vehicles: a bibliographic review (1991—2016)[J]. Renewable and Sustainable Energy Reviews, 2016, 66: 702-741. doi: 10.1016/j.rser.2016.08.041
|
[3] |
TANG Cheng-long, ZHANG Ying-jia, HUANG Zuo-hua. Progress in combustion investigations of hydrogen enriched hydrocarbons[J]. Renewable and Sustainable Energy Reviews, 2014, 30: 195-216. doi: 10.1016/j.rser.2013.10.005
|
[4] |
SANCHEZ A L, WILLIAMS F A. Recent advances in understanding of flammability characteristics of hydrogen[J]. Progress in Energy and Combustion Science, 2014, 41: 1-55. doi: 10.1016/j.pecs.2013.10.002
|
[5] |
范英杰. 车用氢气发动机研究进展综述[J]. 内燃机与配件, 2021(3): 40-42.
FAN Ying-jie. Summary of research progress on hydrogen engines for vehicles[J]. Internal Combustion Engine and Parts, 2021(3): 40-42. (in Chinese)
|
[6] |
MA Fan-hua, WANG Yu. Study on extension of operation limit through hydrogen enrichment in a natural gas spark-ignition engine[J]. International Journal of Hydrogen Energy, 2008, 33: 1416-1424. doi: 10.1016/j.ijhydene.2007.12.040
|
[7] |
MA Fan-hua, WANG Yu, LIU Hai-quan, et al. Effects of hydrogen addition on cycle-by-cycle variations in a lean burn natural gas spark-ignition engine[J]. International Journal of Hydrogen Energy, 2008, 33(2): 823-831. doi: 10.1016/j.ijhydene.2007.10.043
|
[8] |
LUO Si-jie, MA Fan-hua, MEHRA R K, et al. Deep insights of HCNG engine research in China[J]. Fuel, 2019, 263: 116612.
|
[9] |
MA Fan-hua, LI Shun, ZHAO Jian-biao, et al. Effect of compression ratio and spark timing on the power performance and combustion characteristics of an HCNG engine[J]. International Journal of Hydrogen Energy, 2012, 37: 18486-18491. doi: 10.1016/j.ijhydene.2012.08.134
|
[10] |
MA Fan-hua, WANG Ming-yue, JIANG Long, et al. Performance and emission characteristics of a turbocharged spark-ignition hydrogen-enriched compressed natural gas engine under wide open throttle operating conditions[J]. International Journal of Hydrogen Energy, 2010, 35: 12502-12509. doi: 10.1016/j.ijhydene.2010.08.053
|
[11] |
ZHENG Jian-jun, HU Er-jiang, HUANG Zuo-hua, et al. Combustion and emission characteristics of a spray guided direct-injection spark-ignition engine fueled with natural gas-hydrogen blends[J]. International Journal of Hydrogen Energy, 2011, 36: 11155-11163. doi: 10.1016/j.ijhydene.2011.05.119
|
[12] |
MIAO Hai-yan, LU Lin, HUANG Zuo-hua. Flammability limits of hydrogen-enriched natural gas[J]. International Journal of Hydrogen Energy, 2011, 36: 6937-6947. doi: 10.1016/j.ijhydene.2011.02.126
|
[13] |
ORTENZI F, CHIESA M, SCARCELLI R, et al. Experimental tests of blends of hydrogen and natural gas in light-duty vehicles[J]. International Journal of Hydrogen Energy, 2008, 33: 3225-3229. doi: 10.1016/j.ijhydene.2008.01.050
|
[14] |
MUNSHI S R, NEDELCU C, HARRIS J, et al. Hydrogen blended natural gas operation of a heavy duty turbocharged lean burn spark ignition engine[C]//SAE. 2004 Powertrain and Fluid Systems Conference and Exhibition. Warrendale: SAE, 2004: 1-15.
|
[15] |
BHASKER J P, PORPATHAM E. Effects of compression ratio and hydrogen addition on lean combustion characteristics and emission formation in a compressed natural gas fuelled spark ignition engine[J]. Fuel, 2017, 208: 260-270. doi: 10.1016/j.fuel.2017.07.024
|
[16] |
周锐, 郑建, 王明达, 等. 外部燃料重整掺氢对天然气发动机性能的影响[J]. 车用发动机, 2021(3): 20-25.
ZHOU Rui, ZHENG Jian, WANG Ming-da, et al. Influence of hydrogen mixing based on external fuyel reforming on natural gas engine performance[J]. Vehicle Engine, 2021(3): 20-25. (in Chinese)
|
[17] |
ZHANG Pan, GAO Wen-zhi, LI Yong, et al. Misfire detection of diesel engine based on convolutional neural networks[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2021, 235(8): 2148-2165. doi: 10.1177/0954407020987077
|
[18] |
CHEN Wei, PAN Jian-feng, ZUO Qing-song, et al. Combustion performance improvement of a diesel fueled Wankel stratified-charge combustion engine by optimizing assisted ignition strategy[J]. Energy Conversion and Management, 2020, 205: 112324. doi: 10.1016/j.enconman.2019.112324
|
[19] |
LIN S W, YING K C, CHEN S C, et al. Particle swarm optimization for parameter determination and feature selection of support vector machines[J]. Expert Systems with Applications, 2008, 35: 1817-1824. doi: 10.1016/j.eswa.2007.08.088
|
[20] |
MEHRA K R, DUAN Hao, LUO Si-jie, et al. Experimental and artificial neural network (ANN) study of hydrogen enriched compressed natural gas (HCNG) engine under various ignition timings and excess air ratios[J]. Applied Energy, 2018, 228: 736-754. doi: 10.1016/j.apenergy.2018.06.085
|
[21] |
MARIANI V C, OCH S H, COELHO L D, et al. Pressure prediction of a spark ignition single cylinder engine using optimized extreme learning machine models[J]. Applied Energy, 2019, 249: 204-221. doi: 10.1016/j.apenergy.2019.04.126
|
[22] |
VONG C M, WONG P K. Engine ignition signal diagnosis with wavelet packet transform and multi-class least squares support vector machines[J]. Expert Systems with Applications, 2011, 38(7): 8563-8570. doi: 10.1016/j.eswa.2011.01.058
|
[23] |
HOANG A T, NIZETIC S, ONG H C, et al. A review on application of artificial neural network (ANN) for performance and emission characteristics of diesel engine fueled with biodiesel-based fuels[J]. Sustainable Energy Technologies and Assessments, 2021, 47: 101416. doi: 10.1016/j.seta.2021.101416
|
[24] |
SIMSEK S, USLU S, SIMSEK H. Proportional impact prediction model of animal waste fat-derived biodiesel by ANN and RSM technique for diesel engine[J]. Energy, 2022, 239: 122389. doi: 10.1016/j.energy.2021.122389
|
[25] |
SABOUR M H, BEHESHTI A, ESFAHANIAN V. Reduction of experimental effort in conventional engine calibration process by using reduced order model[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2021, 235(2/3): 639-648.
|
[26] |
DUAN Hao, YIN Xiao-jun, KOU Hai-liang, et al. Prediction of combustion promotion effect of high/low-frequency AC electric fields based on machine learning method[J]. Fuel, 2023, 346: 128348. doi: 10.1016/j.fuel.2023.128348
|
[27] |
MA Fan-hua, WANG Yu, DING Shang-fen, et al. Twenty percent hydrogen-enriched natural gas transient performance research[J]. International Journal of Hydrogen Energy, 2009, 34: 6523-6531. doi: 10.1016/j.ijhydene.2009.05.135
|
[28] |
李沁璘. 人工神经网络综述[J]. 科学与信息化, 2021(7): 181-182.
LI Qin-lin. Review of artificial neural networks[J]. Science and Informatization, 2021(7): 181-182. (in Chinese)
|
[29] |
崔长彩, 李兵, 张认成. 粒子群优化算法[J]. 华侨大学学报(自然科学版), 2006, 27(4): 343-347.
CUI Chang-cai, LI Bing, ZHANG Ren-cheng. Particle swarm optimization[J]. Journal of Huaqiao University (Natural Science), 2006, 27(4): 343-347. (in Chinese)
|
[30] |
崔峰, 王汉封, 舒卓乐. 基于PSO-BP神经网络的隧道内气动压力幅值预测[J]. 中南大学学报(自然科学版), 2023, 54(9): 3752-3761.
CUI Feng, WANG Han-feng, SHU Zhuo-le. Prediction of aerodynamic pressure amplitude in tunnel based on PSO-BP neural network[J]. Journal of Central South University (Science and Technology), 2023, 54(9): 3752-3761. (in Chinese)
|
[31] |
BAI Bin, ZHANG Jun-yi, WU Xuan, et al. Reliability prediction-based improved dynamic weight particle swarm optimization and back propagation neural network in engineering systems[J]. Expert Systems with Applications, 2021, 177: 114952.
|