Citation: | ZHOU Yu-ming, DENG Yao, LIU Yu-qin, PENG Zhu-yi, ZHA Xu-dong, LI Ping, WEI Jian-guo, LIU Zhao-hui. Review on pavement power generation technologies[J]. Journal of Traffic and Transportation Engineering, 2024, 24(4): 129-147. doi: 10.19818/j.cnki.1671-1637.2024.04.010 |
[1] |
ATABANI A E, BADRUDDIN I A, MEKHILEF S, et al. A review on global fuel economy standards, labels and technologies in the transportation sector[J]. Renewable and Sustainable Energy Reviews, 2011, 15(9): 4586-4610. doi: 10.1016/j.rser.2011.07.092
|
[2] |
HOLMBERG K, ANDERSSON P, ERDEMIR A. Global energy consumption due to friction in passenger cars[J]. Tribology International, 2012, 47: 221-234. doi: 10.1016/j.triboint.2011.11.022
|
[3] |
ASAEDA T, CA V T, WAKE A. Heat storage of pavement and its effect on the lower atmosphere[J]. Atmospheric Environment, 1996, 30(3): 413-427. doi: 10.1016/1352-2310(94)00140-5
|
[4] |
FEDELE R, MERENDA M, GIAMMARIA F. Energy harvesting for IoT road monitoring systems[J]. Instrumentation Mesure Métrologie, 2018, 18(4): 605-623. doi: 10.3166/i2m.17.605-623
|
[5] |
BAI Yang, JANTUNEN H, JUUTI J. Energy harvesting research: the road from single source to multisource[J]. Advanced Materials (Weinheim), 2018, 30(34): e1707271. doi: 10.1002/adma.201707271
|
[6] |
PAN Pan, WU Shao-peng, XIAO Yue, et al. A review on hydronic asphalt pavement for energy harvesting and snow melting[J]. Renewable and Sustainable Energy Reviews, 2015, 48: 624-634. doi: 10.1016/j.rser.2015.04.029
|
[7] |
ZHU Xing-yi, YU Yue, LI Feng. A review on thermoelectric energy harvesting from asphalt pavement: configuration, performance and future[J]. Construction and Building Materials, 2019, 228: 116818. doi: 10.1016/j.conbuildmat.2019.116818
|
[8] |
GHOLIKHANI M, BEHESHTI SHIRAZI S Y, MABROUK G M, et al. Dual electromagnetic energy harvesting technology for sustainable transportation systems[J]. Energy Conversion and Management, 2021, 230: 113804. doi: 10.1016/j.enconman.2020.113804
|
[9] |
MAGHSOUDI NIA E, WAN ABDULLAH ZAWAWI N A, MAHINDER SINGH B S. Design of a pavement using piezoelectric materials gestaltung eines gehweges mittels piezoelektrischer werkstoffe[J]. Materialwissenschaft Und Werkstofftechnik, 2019, 50(3): 320-328. doi: 10.1002/mawe.201900002
|
[10] |
FAISAL F, WU N, KAPOOR K. Energy harvesting in pavement from passing vehicles with piezoelectric composite plate for ice melting[C]//PARK G. Active and Passive Smart Structures and Integrated Systems 2016. Las Vegas: SPIE Proceedings, 2016: 97992Q.
|
[11] |
HU Heng-wu, VIZZARI D, ZHA Xu-dong, et al. Solar pavements: a critical review[J]. Renewable and Sustainable Energy Reviews, 2021, 152: 111712. doi: 10.1016/j.rser.2021.111712
|
[12] |
PEI Jian-zhong, GUO Fu-cheng, ZHANG Jiu-peng, et al. Review and analysis of energy harvesting technologies in roadway transportation[J]. Journal of Cleaner Production, 2021, 288: 125338. doi: 10.1016/j.jclepro.2020.125338
|
[13] |
YANG Hong-xing, MA Tao. Research and development of solar PV pavement panels for application on the green deck[R]. Hong Kong: The Hong Kong Polytechnic University, 2016.
|
[14] |
EUGSTER W J, SCHATZMANN J. Harnessing solar energy for winter road clearing on heavily loaded expressways[C]//PIARC. Proceedings of XIth PIARC International Winter Road Congress. Sapporo: PIARC, 2002: 1-9.
|
[15] |
TU Yan-ping, LI Jie, GUAN Chang-sheng. Heat transfer analysis of asphalt concrete pavement based on snow melting[C]// IEEE. 2010 International Conference on Electrical and Control Engineering. New York: IEEE, 2010: 3795-3798.
|
[16] |
WU Shao-peng, CHEN Ming-yu, ZHANG Ji-zhe. Laboratory investigation into thermal response of asphalt pavements as solar collector by application of small-scale slabs[J]. Applied Thermal Engineering, 2011, 31(10): 1582-1587. doi: 10.1016/j.applthermaleng.2011.01.028
|
[17] |
NORTHMORE A B, TIGHE S. Developing innovative roads using solar technologies[C]//Canadian Society for Civil Engineering. 9th International Transportation Specialty Conference of the Canadian Society of Civil Engineers Annual Conference. Edmonton: Canadian Society for Civil Engineering, 2012.
|
[18] |
EFTHYMIOU C, SANTAMOURIS M, KOLOKOTSA D, et al. Development and testing of photovoltaic pavement for heat island mitigation[J]. Solar Energy, 2016, 130: 148-160. doi: 10.1016/j.solener.2016.01.054
|
[19] |
WU Guang-xi, YU Xiong. Thermal energy harvesting system to harvest thermal energy across pavement structure[J]. International Journal of Pavement Research and Technology, 2012, 5(5): 311.
|
[20] |
GUO Lu-kai, LU Qing. Potentials of piezoelectric and thermoelectric technologies for harvesting energy from pavements[J]. Renewable and Sustainable Energy Reviews, 2017, 72: 761-773. doi: 10.1016/j.rser.2017.01.090
|
[21] |
ABRAMOVICH H, HARASH E, MILGROM C, et al. Power harvesting apparatus, system and method: U.S., 12/195670[P]. 2010-10-12.
|
[22] |
GAO Qing, HUANG Yong, LI Ming, et al. Experimental study of slab solar collection on the hydronic system of road[J]. Solar Energy, 2010, 84(12): 2096-2102. doi: 10.1016/j.solener.2010.09.008
|
[23] |
KIM H W, PRIYA S, UCHINO K, et al. Piezoelectric energy harvesting under high pre-stressed cyclic vibrations[J]. Journal of Electroceramics, 2005, 15(1): 27-34. doi: 10.1007/s10832-005-0897-z
|
[24] |
KLUGER J M, SAPSIS T P, SLOCUM A H. Robust energy harvesting from walking vibrations by means of nonlinear cantilever beams[J]. Journal of Sound and Vibration, 2015, 341: 174-194. doi: 10.1016/j.jsv.2014.11.035
|
[25] |
陈悦, 陈超美, 刘则渊, 等. CiteSpace知识图谱的方法论功能[J]. 科学学研究, 2015, 33(2): 242-253. doi: 10.3969/j.issn.1003-2053.2015.02.009
CHEN Yue, CHEN Chao-mei, LIU Ze-yuan, et al. The methodology function of CiteSpace mapping knowledge domains[J]. Studies in Science of Science, 2015, 33(2): 242-253. (in Chinese) doi: 10.3969/j.issn.1003-2053.2015.02.009
|
[26] |
张芙颖, 顾鑫炳, 彭毅, 等. 中国灾害风险认知研究的知识图谱分析[J]. 安全与环境工程, 2019, 26(2): 32-37.
ZHANG Fu-ying, GU Xin-bing, PENG Yi, et al. Analysis of knowledge map of disaster risk perception[J]. Safety and Environmental Engineering, 2019, 26(2): 32-37. (in Chinese)
|
[27] |
LIU Xiao-yu, CUI Qing-bin, SCHWARTZ C. Greenhouse gas emissions of alternative pavement designs: framework development and illustrative application[J]. Journal of Environmental Management, 2014, 132: 313-322. doi: 10.1016/j.jenvman.2013.11.016
|
[28] |
WANG Hao, JASIM A, CHEN Xiao-dan. Energy harvesting technologies in roadway and bridge for different applications—a comprehensive review[J]. Applied Energy, 2018, 212: 1083-1094. doi: 10.1016/j.apenergy.2017.12.125
|
[29] |
LI Si-nan, MA Tao, WANG Deng-jia. Photovoltaic pavement and solar road: a review and perspectives[J]. Sustainable Energy Technologies and Assessments, 2023, 55: 102933. doi: 10.1016/j.seta.2022.102933
|
[30] |
BRUSAW S D, BRUSAW J A. Solar roadway panel: U.S., D712822[P]. 2014-09-09.
|
[31] |
胡恒武, 查旭东, 岑晏青, 等. 太阳能路面研究现状及展望[J]. 长安大学学报(自然科学版), 2020, 40(1): 16-29.
HU Heng-wu, ZHA Xu-dong, CEN Yan-qing, et al. Research status and prospect of solar pavement[J]. Journal of Chang'an University(Natural Science Edition), 2020, 40(1): 16-29. (in Chinese)
|
[32] |
SELVARAJU R K. Characterization of solar roadways via computational and experimental investigations[D]. London: The University of Western Ontario, 2012.
|
[33] |
VIZZARI D, PUNTORIERI P, PRATICÒ F G, et al. Solar and permeable road: a prototypical study[C]//DI BENEDETTO H, BAAJ H, CHAILLEUX E, et al. Proceedings of the RILEM International Symposium on Bituminous Materials. Berlin: Springer, 2022: 1675-1680.
|
[34] |
YANG Ning, WEI Xiao-feng, LI Wei-hong. Sunlight irradiation induced green synthesis of silver nanoparticles using peach gum polysaccharide and colorimetric sensing of H2O2[J]. Materials Letters, 2015, 154: 21-24. doi: 10.1016/j.matlet.2015.03.034
|
[35] |
查旭东, 张铖坚, 伍智吉, 等. 太阳能路面空心板块单元力学分析与模型制备[J]. 太阳能学报, 2016, 37(1): 136-141. doi: 10.3969/j.issn.0254-0096.2016.01.021
ZHA Xu-dong, ZHANG Cheng-jian, WU Zhi-ji, et al. Mechanical analysis and model preparation for hollow slab element of solar pavement[J]. Acta Energiae Solaris Sinica, 2016, 37(1): 136-141. (in Chinese) doi: 10.3969/j.issn.0254-0096.2016.01.021
|
[36] |
DEZFOOLI A S, NEJAD F M, ZAKERI H, et al. Solar pavement: a new emerging technology[J]. Solar Energy, 2017, 149: 272-284. doi: 10.1016/j.solener.2017.04.016
|
[37] |
李子豪. 基于透明树脂混凝土的太阳能路面材料与模型制备及性能研究[D]. 长沙: 长沙理工大学, 2018.
LI Zi-hao. Research on preparation and performance of material and model for solar pavement based on transparent resin concrete[D]. Changsha: Changsha University of Science and Technology, 2018. (in Chinese)
|
[38] |
SHEKHAR A, KUMARAVEL V K, KLERKS S, et al. Harvesting roadway solar energy—performance of the installed infrastructure integrated PV bike path[J]. IEEE Journal of Photovoltaics, 2018, 8(4): 1066-1073. doi: 10.1109/JPHOTOV.2018.2820998
|
[39] |
LIU Zi-yu, YANG An-qi, GAO Meng-yao, et al. Towards feasibility of photovoltaic road for urban traffic-solar energy estimation using street view image[J]. Journal of Cleaner Production, 2019, 228: 303-318. doi: 10.1016/j.jclepro.2019.04.262
|
[40] |
WU Ling-jie, YUAN Yue, WU Han. Solar road power generation assessment based on coupled transportation and power distribution systems[J]. Journal of Physics: Conference Series, 2020, 1659(1): 12041-12048. doi: 10.1088/1742-6596/1659/1/012041
|
[41] |
GARCÍA A, PARTL M N. How to transform an asphalt concrete pavement into a solar turbine[J]. Applied Energy, 2014, 119: 431-437. doi: 10.1016/j.apenergy.2014.01.006
|
[42] |
ROWE L A. Video compression for desktop applications[J]. IT—Information Technology, 1995, 37(4): 7-10. doi: 10.1524/itit.1995.37.4.7
|
[43] |
MALLICK R B, CHEN B L, BHOWMICK S. Harvesting energy from asphalt pavements and reducing the heat island effect[J]. International Journal of Sustainable Engineering, 2009, 2(3): 214-228. doi: 10.1080/19397030903121950
|
[44] |
HASEBE M, KAMIKAWA Y, MEIARASHI S. Thermoelectric generators using solar thermal energy in heated road pavement[C]//IEEE. 25th International Conference on Thermoelectrics. New York: IEEE, 2006: 697-700.
|
[45] |
DATTA U, DESSOUKY S, PAPAGIANNAKIS A T. Harvesting of thermoelectric energy from asphalt pavements[J]. Transportation Research Record, 2017(2628): 12-22.
|
[46] |
胡甫才, 朱顺敏, 汪岸, 等. 沥青路面温差发电系统设计分析与试验研究[J]. 武汉理工大学学报(交通科学与工程版), 2014, 38(4): 834-838. doi: 10.3963/j.issn.2095-3844.2014.04.029
HU Fu-cai, ZHU Shun-min, WANG An, et al. Design analysis and experimental study of asphalt pavement temperature difference power generation system[J]. Journal of Wuhan University of Technology (Transportation Science and Engineering) 2014, 38(4): 834-838. (in Chinese) doi: 10.3963/j.issn.2095-3844.2014.04.029
|
[47] |
YUAN Dong-dong, JIANG Wei, SHA Ai-min, et al. Energy output and pavement performance of road thermoelectric generator system[J]. Renewable Energy, 2022, 201: 22-33. doi: 10.1016/j.renene.2022.11.057
|
[48] |
YANG Hai-lu, WEI Ya, ZHANG Wei-dong, et al. Development of piezoelectric energy harvester system through optimizing multiple structural parameters[J]. Sensors, 2021, 21(8): 2876. doi: 10.3390/s21082876
|
[49] |
周均. 基于压电材料的智能梁结构性能研究[D]. 南京: 东南大学, 2018.
ZHOU Jun. Mechanical study on piezoelectric smart beam[D]. Nanjing: Southeast University, 2018. (in Chinese)
|
[50] |
WANG Chao-hui, WANG Shuai, GAO Zhi-wei, et al. Applicability evaluation of embedded piezoelectric energy harvester applied in pavement structures[J]. Applied Energy, 2019, 251: 113383. doi: 10.1016/j.apenergy.2019.113383
|
[51] |
JUNG I, SHIN Y H, KIM S, et al. Flexible piezoelectric polymer-based energy harvesting system for roadway applications[J]. Applied Energy, 2017, 197: 222-229. doi: 10.1016/j.apenergy.2017.04.020
|
[52] |
SHIN Y, JUNG I, NOH M, et al. Piezoelectric polymer-based roadway energy harvesting via displacement amplification module[J]. Applied Energy, 2018, 216: 741-750. doi: 10.1016/j.apenergy.2018.02.074
|
[53] |
赵晓康. 压电发电技术在道路应用中的可行性研究[D]. 西安: 长安大学, 2013.
ZHAO Xiao-kang. Feasibility study on piezoelectric power generation technology applied in pavement[D]. Xi'an: Chang'an University, 2013. (in Chinese)
|
[54] |
GUAN Ming-jie. Characteristics of piezoelectric energy harvesting circuits and storage devices[D]. Hong Kong: The Chinese University of Hong Kong, 2006.
|
[55] |
谭忆秋, 钟勇, 吕建福, 等. 路面用PZT/沥青压电复合材料的制备及性能[J]. 建筑材料学报, 2013, 16(6): 975-980.
TAN Yi-qiu, ZHONG Yong, LYU Jian-fu, et al. Preparation and properties of PZT/asphalt-based piezoelectric composites used on pavement[J]. Journal of Building Materials, 2013, 16(6): 975-980. (in Chinese)
|
[56] |
黄世峰, 叶正茂, 王守德, 等. 1-3型水泥基压电复合材料的制备及性能[J]. 复合材料学报, 2007, 24(1): 122-126. doi: 10.3321/j.issn:1000-3851.2007.01.021
HUANG Shi-feng, YE Zheng-mao, WANG Shou-de, et al. Fabrication and properties of 1-3 cement based piezoelectric composites[J]. Acta Materiae Compositae Sinica, 2007, 24(1): 122-126. (in Chinese) doi: 10.3321/j.issn:1000-3851.2007.01.021
|
[57] |
关新春, 刘彦昌, 李惠, 等. 1-3型水泥基压电复合材料的制备与性能研究[J]. 防灾减灾工程学报, 2010, 30(增1): 345-347.
GUAN Xin-chun, LIU Yan-chang, LI Hui, et al. Preparation and properties of 1-3 cement-based piezoelectric composites[J]. Journal of Disaster Prevention and Mitigation Engineering, 2010, 30(S1): 345-347. (in Chinese)
|
[58] |
WANG J, XIAO F, ZHAO H. Thermoelectric, piezoelectric and photovoltaic harvesting technologies for pavement engineering[J]. Renewable and Sustainable Energy Reviews, 2021, 151: 111522. doi: 10.1016/j.rser.2021.111522
|
[59] |
BAKER J, ROUNDY S, WRIGHT P. Alternative geometries for increasing power density in vibration energy scavenging for wireless sensor networks[C]// AIAA. 3rd International Energy Conversion Engineering Conference. Reston: AIAA, 2005: 5617.
|
[60] |
SODANO H A, PARK G, INMAN D J. An investigation into the performance of macro-fiber composites for sensing and structural vibration applications[J]. Mechanical Systems and Signal Processing, 2004, 18(3): 683-697. doi: 10.1016/S0888-3270(03)00081-5
|
[61] |
侯志伟, 陈仁文, 刘祥建. 多方向压电振动能量收集装置及其优化设计[J]. 振动与冲击, 2012, 31(16): 33-37. doi: 10.3969/j.issn.1000-3835.2012.16.007
HOU Zhi-wei, CHEN Ren-wen, LIU Xiang-jian. Optimization design of multi-direction piezoelectric vibration energy harvester[J]. Journal of Vibration and Shock, 2012, 31(16): 33-37. (in Chinese) doi: 10.3969/j.issn.1000-3835.2012.16.007
|
[62] |
YANG Zheng-bao, WANG Yan-qing, ZUO Lei, et al. Introducing arc-shaped piezoelectric elements into energy harvesters[J]. Energy Conversion and Management, 2017, 148: 260-266. doi: 10.1016/j.enconman.2017.05.073
|
[63] |
PLATT S R, FARRITOR S, HAIDER H. On low-frequency electric power generation with PZT ceramics[J]. IEEE/ASME Transactions on Mechatronics, 2005, 10(2): 240-252. doi: 10.1109/TMECH.2005.844704
|
[64] |
李琛琛, 赵鸿铎, 马鲁宽, 等. 路用叠堆式压电单元设计及性能分析[J]. 中南大学学报(自然科学版), 2021, 52(7): 2170-2178.
LI Chen-chen, ZHAO Hong-duo, MA Lu-kuan, et al. Design and performance analysis of stacked piezoelectric units for pavement application[J]. Journal of Central South University (Science and Technology), 2021, 52(7): 2170-2178. (in Chinese)
|
[65] |
ZHAO Hong-duo, QIN Lu-yao, LING Jian-ming. Synergistic performance of piezoelectric transducers and asphalt pavement[J]. International Journal of Pavement Research and Technology, 2018, 11(4): 381-387. doi: 10.1016/j.ijprt.2017.09.008
|
[66] |
LIU Peng-fei, ZHAO Qian, YANG Hai-lu, et al. Numerical study on influence of piezoelectric energy harvester on asphalt pavement structural responses[J]. Journal of Materials in Civil Engineering, 2019, 31(3): 04019008. doi: 10.1061/(ASCE)MT.1943-5533.0002640
|
[67] |
ZHAO J, WANG H. Mechanistic modeling and economic analysis of piezoelectric energy harvesting potential in airport pavements[J]. Transportation Research Record, 2020(2674): 64-75.
|
[68] |
王朝辉, 陈森, 李彦伟, 等. 智能发电路面压电元件保护措施设计及能量输出[J]. 中国公路学报, 2016, 29(5): 41-49. doi: 10.3969/j.issn.1001-7372.2016.05.006
WANG Chao-Hui, CHEN Sen, LI Yan-wei, et al. Design of piezoelectric elements' protection measures and energy output of intelligent power pavement[J]. China Journal of Highway and Transport, 2016, 29(5): 41-49. (in Chinese) doi: 10.3969/j.issn.1001-7372.2016.05.006
|
[69] |
WANG Chao-hui, ZHAO Jian-xiong, LI Qiang, et al. Optimization design and experimental investigation of piezoelectric energy harvesting devices for pavement[J]. Applied Energy, 2018, 229: 18-30. doi: 10.1016/j.apenergy.2018.07.036
|
[70] |
仝军令, 王亚栋, 彭玉兴. 集成式压电路面能量收集装置输出性能的实验[J]. 机械设计与研究, 2021, 37(3): 29-32, 37.
TONG Jun-ling, WANG Ya-dong, PENG Yu-xing. Experimental study on output performance of integrated piezoelectric pavement energy harvester[J]. Machine Design and Research, 2021, 37(3): 29-32, 37. (in Chinese)
|
[71] |
GUO Lu-kai, WANG Hao, SOARES L, et al. Multi-physics modelling of piezoelectric pavement system for energy harvesting under traffic loading[J]. The International Journal of Pavement Engineering, 2022, 23(10): 3647-3661. doi: 10.1080/10298436.2021.1913591
|
[72] |
李彦伟, 陈森, 王朝辉, 等. 智能发电路面技术现状及发展[J]. 材料导报, 2015, 29(7): 100-106.
LI Yan-wei, CHEN Sen, WANG Chao-hui, et al. Present situation and development of intelligent power generation pavement technology[J]. Material Reports, 2015, 29(7): 100-106. (in Chinese)
|
[73] |
WANG Yuan, ZHU Xin, ZHANG Ting-sheng, et al. A renewable low-frequency acoustic energy harvesting noise barrier for high-speed railways using a Helmholtz resonator and a PVDF film[J]. Applied Energy, 2018, 230: 52-61. doi: 10.1016/j.apenergy.2018.08.080
|