Volume 24 Issue 5
Oct.  2024
Turn off MathJax
Article Contents
LIU Zhuang-zhuang, LI Yao-cheng, WANG Feng, SHA Ai-min. Slope effects on highway-side photovoltaics and its wind load calculation method[J]. Journal of Traffic and Transportation Engineering, 2024, 24(5): 1-11. doi: 10.19818/j.cnki.1671-1637.2024.05.001
Citation: LIU Zhuang-zhuang, LI Yao-cheng, WANG Feng, SHA Ai-min. Slope effects on highway-side photovoltaics and its wind load calculation method[J]. Journal of Traffic and Transportation Engineering, 2024, 24(5): 1-11. doi: 10.19818/j.cnki.1671-1637.2024.05.001

Slope effects on highway-side photovoltaics and its wind load calculation method

doi: 10.19818/j.cnki.1671-1637.2024.05.001
Funds:

National Key Research and Development Program of China 2021YFB1600201

More Information
  • Author Bio:

    LIU Zhuang-zhuang(1986-), male, professor, PhD, zzliu@chd.edu.cn

  • Received Date: 2024-04-01
    Available Online: 2024-12-20
  • Publish Date: 2024-10-25
  • To evaluate the wind load situation on highway photovoltaic slopes (HPVS), a rigid piezometric wind tunnel test was applied to explore the influences of key parameters on the wind load on HPVS, including the wind direction angle, module inclination angle, slope gradient and array position. The slope gradient factor and wind direction angle factor were proposed, and according to the wind tunnel test, a method was provided to estimate the standard value of the wind load of HPVS based on the wind direction angle and slope gradient. Research results show that the slope effect brings a significant influence on HPVS wind load characteristics, and it is more apparent in the downstream elements of HPVS. At positive wind direction angles, the HPVS shows an amplification effect. The effect manifests as amplified wind pressures at small slopes and amplified wind suction at large slopes. It also presents a wind load blocking effect at negative wind direction angles, while the whole wind load is close to zero at large slopes. Under small slope conditions, the wind pressure on HPVS reaches the highest as the wind direction angle is 30°, while the wind suction is the largest when the wind direction angle is 150°. The HPVS is significantly affected by the change of its module inclination angle. Compared to the one without slope, the HPVS module inclination angle with slope has more severe impact on its whole shape coefficient. With the same slope gradient, the shape coefficient of the HPVS module increases with the rise of the module inclination angle. When the slope gradient is 30°, the changing of the HPVS module inclination angle results in the HPVS wind load turning from wind suctions to wind pressures. When the slope gradient is less than 20°, the shape coefficients of the whole module and the lower surface are less affected by the slope gradient at positive wind direction angles. The slope effect is relatively insignificant. When the slope gradient is higher than 20°, the slope gradient shows an increasing remarkable influence on the shape coefficients of the whole module and the lower surface at positive wind direction angles. Meanwhile, the slope effect strengthens gradually. When the slope gradient is close to the module inclination angle, the whole HPVS wind load is slightly affected by the slope structure. In summary, the research results provide a foundation for the wind load calculation in HPVS design.

     

  • loading
  • [1]
    黄仙, 叶笑容, 纪文童, 等. 高速公路自洽能源系统规划中的经济性特点[J]. 交通运输工程学报, 2024, 24(4): 56-70. doi: 10.19818/j.cnki.1671-1637.2024.04.005

    HUANG Xian, YE Xiao-rong, JI Wen-tong, et al. Economic characteristics of highway self-consistent energy system planning[J]. Journal of Traffic and Transportation Engineering, 2024, 24(4): 56-70. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2024.04.005
    [2]
    沙爱民, 贾利民, 刘状壮, 等. 交通与能源融合技术发展2024[M]. 北京: 人民交通出版社, 2024.

    SHA Ai-min, JIA Li-min, LIU Zhuang-zhuang, et al. Development of Transport and Energy Integration Technologies 2024[M]. Beijing: China Communication Press, 2024. (in Chinese)
    [3]
    黄宇, 孙浩, 程伟, 等. 光伏路面板制备与性能研究[C]//人民交通出版社. 2024世界交通运输大会(WTC2024)论文集(水上运输与交叉学科). 北京: 人民交通出版社, 2024: 6.

    HUANG Yu, SUN Hao, CHENG Wei, et al. Preparation and performance research of photovoltaic pavement slab[C]//China Communications Press. 2024 World Transport Convention (WTC2024) Colloquium (Water Transportation and Interdisciplinary Subjects). Beijing: China Communications Press, 2024: 6.
    [4]
    黎耀诚, 孙浩, 黄宇, 等. 公路光伏边坡风荷载特性研究[C]//人民交通出版社. 2024世界交通运输大会(WTC2024)论文集(水上运输与交叉学科). 北京: 人民交通出版社, 2024: 5.

    LI Yao-cheng, SUN Hao, HUANG Yu, et al. Research on wind load characteristics of highway photovoltaic slope[C]//China Communications Press. 2024 World Transport Convention (WTC2024) Colloquium (Water Transportation and Interdisciplinary Subjects). Beijing: China Communications Press, 2024: 5.
    [5]
    NEUMANN H, SCHÄR D, BAUMGARTNER F. The potential of photovoltaic carports to cover the energy demand of road passenger transport[J]. Progress in Photovoltaics: Research and Applications, 2012, 20(6): 639-649. doi: 10.1002/pip.1199
    [6]
    胡力群, 黄虹鑫, 沙爱民. 中国高速公路路域内的光伏发电潜力评估[J]. 交通运输工程学报, 2024, 24(4): 1-13. doi: 10.19818/j.cnki.1671-1637.2024.04.001

    HU Li-qun, HUANG Hong-xin, SHA Ai-min. Potential assessment of photovoltaic power in expressway area in China[J]. Journal of Traffic and Transportation Engineering, 2024, 24(4): 1-13. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2024.04.001
    [7]
    沙爱民, 刘状壮, 蒋玮, 等. 关于交通与能源融合发展的对策与建议[J]. 交通运输决策参考, 2023(7): 1-21.

    SHA Ai-min, LIU Zhuang-zhuang, JIANG Wei, et al. Countermeasures and suggestions for integrated development of transportation and energy[J]. Transportation Decision-Making Reference, 2023(7): 1-21. (in Chinese)
    [8]
    杨鹏浩, 陈诗璇, 肖建伟. 高速公路边坡太阳能研究现状及发展展望综述[J]. 科技与创新, 2020(17): 19-21, 23.

    YANG Peng-hao, CHEN Shi-xuan, XIAO Jian-wei. Review of current status and development prospects of solar energy research on highway slopes[J]. Science and Technology and Innovation, 2020(17): 19-21, 23. (in Chinese)
    [9]
    徐亚洲, 田锐, 李冰, 等. 山地光伏阵列风荷载地形效应风洞试验研究[J]. 土木工程学报, 2024, https://doi.org/10.15951/j.tmgcxb.24050410.

    XU Ya-zhou, TIAN Rui, LI Bing, et al. Wind tunnel test study on terrain effect of wind load on mountain solar panel arrays[J]. China Civil Engineering Journal, 2024, https://doi.org/10.15951/j.tmgcxb.24050410. (in Chinese)
    [10]
    马文勇, 柴晓兵, 马成成. 柔性支撑光伏组件风荷载影响因素试验研究[J]. 太阳能学报, 2021, 42(11): 10-18.

    MA Wen-yong, CHAI Xiao-bing, MA Cheng-cheng. Experimental study on wind load influencing factors of flexible support photovoltaic modules[J]. Acta Energiae Solaris Sinica, 2021, 42(11): 10-18. (in Chinese)
    [11]
    全勇, 吴建高, 陈艳, 等. 风向角和倾角对光伏阵列风荷载的影响[J]. 太阳能学报, 2024, 45(1): 25-31.

    QUAN Yong, WU Jian-gao, CHEN Yan, et al. Influence of wind direction and inclination angle on wind load of photovoltaic arrays[J]. Acta Energiae Solaris Sinica, 2024, 45(1): 25-31. (in Chinese)
    [12]
    周炜, 何斌, 蔡晶, 等. 一类光伏电站架构体系的风荷载特性及折减分析[J]. 结构工程师, 2018, 34(2): 86-94.

    ZHOU Wei, HE Bin, CAI Jing, et al. Wind load characteristics and reduction analysis of a structural system of photovoltaic power station[J]. Structural Engineers, 2018, 34(2): 86-94. (in Chinese)
    [13]
    刘志超. 带弹性抗风索的柔性光伏支架的受力性能[D]. 南京: 东南大学, 2022.

    LIU Zhi-chao. Mechanical behavior of flexible photovoltaic support with elastic wind resistant cable[D]. Nanjing: Southeast University, 2022. (in Chinese)
    [14]
    杜航, 徐海巍, 张跃龙, 等. 大跨柔性光伏支架结构风压特性及风振响应[J]. 哈尔滨工业大学学报, 2022, 54(10): 67-74.

    DU Hang, XU Hai-wei, ZHANG Yue-long, et al. Wind pressure characteristics and wind vibration response of long-span flexible photovoltaic support structure[J]. Journal of Harbin Institute of Technology, 2022, 54(10): 67-74. (in Chinese)
    [15]
    李寿英, 马杰, 刘佳琪, 等. 柔性光伏系统颤振性能的节段模型试验研究[J]. 土木工程学报, 2024, 57(2): 25-34.

    LI Shou-ying, MA Jie, LIU Jia-qi, et al. Experimental study on flutter performance of flexible photovoltaic system by segmental model test[J]. China Civil Engineering Journal, 2024, 57(2): 25-34. (in Chinese)
    [16]
    王峰, 王佳盈, 王子健, 等. 大长宽比平单轴光伏板风荷载试验研究[J]. 湖南大学学报(自然科学版), 2023, 50(7): 130-139.

    WANG Feng, WANG Jia-ying, WANG Zi-jian, et al. Experimental study on wind load of flat uniaxial photovoltaic panels with large aspect ratio[J]. Journal of Hunan University (Natural Sciences), 2023, 50(7): 130-139. (in Chinese)
    [17]
    XU Hai-wei, DING Kun-yang, SHEN Guo-hui, et al. Experimental investigation on wind-induced vibration of photovoltaic modules supported by suspension cables[J]. Engineering Structures, 2024, 299: 117125.
    [18]
    KIM Y C, TAMURA Y, YOSHIDA A, et al. Experimental investigation of aerodynamic vibrations of solar wing system[J]. Advances in Structural Engineering, 2018, 21(15): 2217-2226.
    [19]
    KIM C Y, SHAN W, YANG S Q, et al. Effect of panel shapes on wind-induced vibrations of solar wing system under various wind environments[J]. Journal of Structural Engineering, 2020, 146(6): 04020104.
    [20]
    LI Jun-long, HONG Guan-hao, XU Hai-wei. Wind load effects and gust loading factor for cable-suspended photovoltaic structures[J]. Energies, 2023, 17(1): 38.
    [21]
    CHEN Fu-bin, ZHU Yu-zhe, WANG wie-jia, et al. A review on aerodynamic characteristics and wind-induced response of flexible support photovoltaic system[J]. Atmosphere, 2023, 14(4): 731.
    [22]
    TAMURA Y, KIM C Y, YOSHIDA A, et al. Wind-induced vibration experiment on solar wing[J]. MATEC Web of Conferences, 2015, 24: 2404006.
    [23]
    NAN Bo, CHI Yuan-peng, JIANG Ying-chun, et al. Wind load and wind-induced vibration of photovoltaic supports: a review[J]. Sustainability, 2024, 16(6): 2551.
    [24]
    杨刚, 陈鸣, 陈卓武. 固定式光伏阵列最佳倾角的CAD计算方法[J]. 中山大学学报(自然科学版), 2008, 47(增2): 165-169.

    YANG Gang, CHEN Ming, CHEN Zhuo-wu. CAD method used in determining the optimum tilt angle of fixed PV arrays[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2008, 47(S2): 165-169. (in Chinese)
    [25]
    杨金焕, 毛家俊, 陈中华. 不同方位倾斜面上太阳辐射量及最佳倾角的计算[J]. 上海交通大学学报, 2002, 36(7): 1032-1036.

    YANG Jin-huan, MAO Jia-jun, CHEN Zhong-hua. Calculation of solar radiation on variously oriented tilted surface and optimum tilt angle[J]. Journal of Shanghai Jiao Tong University, 2002, 36(7): 1032-1036. (in Chinese)
    [26]
    申政, 吕建, 杨洪兴, 等. 太阳辐射接受面最佳倾角的计算与分析[J]. 天津城市建设学院学报, 2009, 15(1): 61-64, 75.

    SHEN Zheng, LYU Jian, YANG Hong-xing, et al. Investigation on optimum tilt angles of solar radiation absorbing surfaces[J]. Journal of Tianjin Chengjian University, 2009, 15(1): 61-64, 75. (in Chinese)
    [27]
    陈正洪, 孙朋杰, 成驰, 等. 武汉地区光伏组件最佳倾角的实验研究[J]. 中国电机工程学报, 2013, 33(34): 98-105, 17.

    CHEN Zheng-hong, SUN Peng-jie, CHENG Chi, et al. Experimental research on the optimal tilted angle for PV modules in Wuhan[J]. Proceedings of the CSEE, 2013, 33(34): 98-105, 17. (in Chinese)
    [28]
    窦珍珍. 光伏组件影响因素的风洞试验及数值模拟研究[D]. 西安: 长安大学, 2014.

    DOU Zhen-zhen. The study of the influence factors on photovoltaic modules wind tunnel test and numerical simulation[D]. Xi'an: Chang'an University, 2014. (in Chinese)
    [29]
    柴晓兵. 柔性太阳能光伏支架风荷载取值研究[D]. 石家庄: 石家庄铁道大学, 2020.

    CHAI Xiao-bing. Research on wind loads on flexible solar photovoltaic support system[D]. Shijiazhuang: Shijiazhuang Tiedao University, 2020. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (22) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return