Citation: | CHEN Kun, LI Fang, FENG Zhen-yu, CHEN Xiang-ming, DUAN Long-kun. Evacuation trajectory prediction of passengers in transport aircraft based on social-implicit model[J]. Journal of Traffic and Transportation Engineering, 2024, 24(5): 270-284. doi: 10.19818/j.cnki.1671-1637.2024.05.018 |
[1] |
Aviation Safety Network. ASN aviation safety WikiBase 1999-2021[EB/OL]. 2021,
|
[2] |
Airbus. A statistical analysis of commercial aviation accidents 1958-2021[R]. Blagnac: Airbus, 2022.
|
[3] |
MOTEVALLI V, MONAJEMI L, RASSI M. Evaluation and mitigation of aircraft slide evacuation injuries[R]. Washington DC: Transportation Research Board, 2008.
|
[4] |
MARCUS J H. A review of computer evacuation models and their data needs[R]. Washington DC: Civil Aeromedical Institute, 1994.
|
[5] |
DOPART K. Aircraft evacuation testing: research and technology issues[R]. Washington DC: Office of Technology Assessment, 1993.
|
[6] |
Australian Business Traveller. Supersizing the superjumbo: airbus says 1 000 seat A380 due 2020[EB/OL]. 2019,
|
[7] |
FENG Wen-chun, LI Wei, ZHANG Tong, et al. Emergency evacuation simulation and test research of civil aircraft complex groups based on the social attribute[J]. Journal of Northwestern Polytechnical University, 2022, 40(4): 853-864. (in Chinese).
|
[8] |
HARRIS D, MUIR H C. Contemporary Issues in Human Factors and Aviation Safety[M]. Hampshire: Ashgate, 2005.
|
[9] |
MUIR H, THOMAS L. Passenger safety and very large transportation aircraft[J]. Aircraft Engineering and Aerospace Technology, 2004, 76(5): 479-486. doi: 10.1108/00022660410555158
|
[10] |
GALEA E R, BLAKE S J, GWYNNE S, et al. The use of evacuation modelling techniques in the design of very large transport aircraft and blended wing body aircraft[J]. The Aeronautical Journal, 2003, 107(1070): 207-218. doi: 10.1017/S0001924000013270
|
[11] |
GALEA E R. Proposed methodology for the use of computer simulation to enhance aircraft evacuation certification[J]. Journal of Aircraft, 2006, 43(5): 1405-1413. doi: 10.2514/1.20937
|
[12] |
ROBBINS C R, MCKEE S. Simulating the evacuation of a commercial airliner[J]. The Aeronautical Journal, 2001, 105(1048): 323-328. doi: 10.1017/S0001924000012203
|
[13] |
XUE Z D, BLOEBAUM C. A particle swarm optimization based aircraft evacuation simulation model-VacateAir[C]//AIAA. 46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008: 1-20.
|
[14] |
XUE Z D, BLOEBAUM C. Experimental design based aircraft egress analysis using VacateAir-an aircraft evacuation simulation model[C]//AIAA. 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston: AIAA, 2008: 6061.
|
[15] |
JIANG Xing-yu, XIN Yue-lan, LIU Wei-ming. Vehicle detection model based on compressedand lightweight deep neural network[J]. Information Technology, 2020, 44(7): 23-27, 32. (in Chinese).
|
[16] |
WANG Ji-jun, JING Hui, FENG Shu-ming, et al. Object detection method of video monitoring in power warehouse based on Faster R-CNN[J]. Information Technology, 2019, 43(7): 92-96. (in Chinese).
|
[17] |
GIRSHICK R. Fast R-CNN[C]//IEEE. 2015 IEEE International Conference on Computer Vision (ICCV). New York: IEEE, 2015: 1440-1448.
|
[18] |
LUO Jing-yao, HUANG Zheng. Target detection based on CNN classifier and convolution[J]. Information Technology, 2017, 41(9): 101-104, 108. (in Chinese).
|
[19] |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. doi: 10.1109/TPAMI.2016.2577031
|
[20] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//IEEE. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2016: 779-788.
|
[21] |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Springer. European Conference on Computer Vision (ECCV). Berlin: Springer, 2016: 21-37.
|
[22] |
IANDOLA F N, HAN S, MOSKEWICZ M W, et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size[C]//ICLR. Proceedings of the 5th International Conference on Learning Representations. New York: ICLR, 2016: 1-13.
|
[23] |
SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//IEEE. 2018 IEEE/CFV Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2018: 4510-4520.
|
[24] |
XUAN Qi, LI Fu-xian. Action recognition method based on multiple duration feature fusion[J]. Journal of Zhejiang University of Technology, 2020, 48(4): 361-366. (in Chinese).
|
[25] |
HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554. doi: 10.1162/neco.2006.18.7.1527
|
[26] |
TAN Zi-yang, GAO Zhong-wen, DENG Yu, et al. The long term prediction of vehicle trajectory based on improved extreme learning machine and depth neural network fusion[J]. Automobile Technology, 2020(11): 16-20. (in Chinese).
|
[27] |
GUPTA A, JOHNSON J, LI F F, et al. Social GAN: socially acceptable trajectories with generative adversarial networks[C]//IEEE. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2018: 2255-2264.
|
[28] |
SADEGHIAN A, KOSARAJU V, SADEGHIAN A, et al. SoPhie: an attentive GAN for predicting paths compliant to social and physical constraints[C]//IEEE. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2019: 1349-1358.
|
[29] |
CARTLIDGE J, GONG S H, BAI R B, et al. Spatio-temporal prediction of shopping behaviours using taxi trajectory data[C]// IEEE. 2018 IEEE 3rd International Conference on Big Data Analysis. New York: IEEE, 2018: 112-116.
|
[30] |
QIAO Shao-jie, JIN Kun, HAN Nan, et al. Trajectory prediction algorithm based on Gaussian mixture model[J]. Journal of Software, 2015, 26(5): 1048-1063. (in Chinese).
|
[31] |
PECHER P, HUNTER M, FUJIMOTO R. Data-driven vehicle trajectory prediction[C]//ACM. Proceedings of the 2016 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation. New York: ACM, 2016: 13-22.
|
[32] |
ZHANG Kai. Learning and prediction based on massive taxi trajectory data[D]. Xi'an: Chang'an University, 2019. (in Chinese).
|
[33] |
MUIR H, COBBETT A. Aircraft evacuation tests—an initial assessment of the influence of various aisle configurations and lighting conditions under different evacuation scenarios[R]. Montreal: Transportation Development Centre, 1996.
|
[34] |
WU Yi-bing. Research on aircraft emergency evacuation simulation based on social force model[D]. Tianjin: Civil Aviation University of China, 2018. (in Chinese).
|
[35] |
DU Yue-juan. Civil aircraft emergency evacuation simulation and analysis of parameter influence[D]. Tianjin: Civil Aviation University of China, 2017. (in Chinese).
|
[36] |
SONG Na. Bottleneck analysis and simulation of emergency evacuation of aircraft crew[D]. Tianjin: Civil Aviation University of China, 2020. (in Chinese).
|
[37] |
PELLEGRINI S, ESS A, SCHINDLER K, et al. You'll never walk alone: modeling social behavior for multi-target tracking[C]//IEEE. 2009 IEEE 12th International Conference on Computer Vision. New York: IEEE, 2009: 261-268.
|
[38] |
LERNER A, CHRYSANTHOU Y, LISHINSKI D. Crowds by example[J]. Computer Graphics Forum, 2007, 26(3): 655-664. doi: 10.1111/j.1467-8659.2007.01089.x
|
[39] |
HELBING D, JOHANSSON A. Encyclopedia of Complexity and Systems Science[M]. New York: Springer, 2013.
|
[40] |
MOHAMED A, ZHU D Y, VU W, et al. Social-implicit: rethinking trajectory prediction evaluation and the effectiveness of implicit maximum likelihood estimation[C]//Springer. Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2022: 463-479.
|
[41] |
ALAHI A, GOEL K, RAMANATHAN V, et al. Social LSTM: human trajectory prediction in crowded spaces[C]// IEEE. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2016: 961-971.
|
[42] |
IVANOVIC B, PAVONE M. The trajectron: probabilistic multi-agent trajectory modeling with dynamic spatiotemporal graphs[C]//IEEE 2019 IEEE/CVF International Conference on Computer Vision (ICCV). New York: IEEE, 2019: 2375-2384.
|
[43] |
MONTI A, BERTUGLI A, CALDERARA S, et al. DAG-net: double attentive graph neural network for trajectory forecasting[C]//IEEE. 2020 25th International Conference on Pattern Recognition (ICPR). New York: IEEE, 2021: 2804-2810.
|
[44] |
MOHAMED A, QIAN K, ELHOSEINY M, et al. Social- STGCNN: a social spatio-temporal graph convolutional neural network for human trajectory prediction[C]//IEEE. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2020: 14424-14432.
|
[45] |
ZHANG J, KLINGSCH W, SCHADSCHNEIDER A, et al. Transitions in pedestrian fundamental diagrams of straight corridors and T-junctions[J]. Journal of Statistical Mechanics: Theory and Experiment, 2011, 2011(6): P06004.
|