Volume 24 Issue 5
Oct.  2024
Turn off MathJax
Article Contents
LI Zhong-qi, ZHONG Ling-yu, YANG Hui. Distributed cooperative predictive control of virtual coupled trains[J]. Journal of Traffic and Transportation Engineering, 2024, 24(5): 362-378. doi: 10.19818/j.cnki.1671-1637.2024.05.023
Citation: LI Zhong-qi, ZHONG Ling-yu, YANG Hui. Distributed cooperative predictive control of virtual coupled trains[J]. Journal of Traffic and Transportation Engineering, 2024, 24(5): 362-378. doi: 10.19818/j.cnki.1671-1637.2024.05.023

Distributed cooperative predictive control of virtual coupled trains

doi: 10.19818/j.cnki.1671-1637.2024.05.023
Funds:

National Natural Science Foundation of China 52472342

National Natural Science Foundation of China 52162048

National Natural Science Foundation of China 61991404

National Natural Science Foundation of China 62363011

More Information
  • Author Bio:

    LI Zhong-qi(1975-), male, professor, PhD, lzq0828@163.com

  • Received Date: 2024-05-12
    Available Online: 2024-12-20
  • Publish Date: 2024-10-25
  • To improve the cooperative tracking efficiency and stability of virtual coupled trains, a multi-train interactive cooperative tracking control method was proposed based on the distributed model predictive control (DMPC). A state-space model of virtual coupled leader-follower trains bidirectional topology was established based on the unit train dynamics analysis, so as to improve the limitation of unidirectional topology and make the communication structure more stable. The improved DMPC algorithm was designed by introducing the neighboring system state information into the cost index function and weighting it with the self-state information. Under the constraints of running velocity limit, distance limit, and control quantity limit, the optimal control quantity and state quantity of trains were obtained by solving the improved cost index function, the distributed cooperative control of virtual coupled trains was realized, and the feasibility and closed-loop stability of the algorithm were theoretically proven. The semi-physical simulation system for train tracking and running in the laboratory was used for simulation. The virtual coupled trains consisting of four CRH380A unit trains were controlled to track a specified velocity curve and compared the proposed algorithm with other traditional algorithms. Simulation results indicate that under different initial conditions, the distance and velocity errors of virtual coupled trains can converge after 300 s, the control output can meet the requirements of passenger comfort, and each unit train can still maintain a stable coupled formation after receiving the velocity adjustment instruction. The root mean square errors of velocity and distance of virtual coupled trains obtained by the proposed method are 3.32×10-8 km·h-1 and 6.11×10-7 m, respectively, which are 99.99% lower than traditional methods. Therefore, the control and tracking performance of the proposed method is superior to that of traditional control methods, and the sampling time simulation duration of each unit train can be guaranteed within 3 ms, meeting the requirements of high-speed train control system.

     

  • loading
  • [1]
    DI MEO C, DI VAIO M, FLAMMINI F, et al. ERTMS/ETCS virtual coupling: proof of concept and numerical analysis[J]. IEEE transactions on intelligent transportation systems, 2019, 21(6): 2545-2556.
    [2]
    FLAMMINI F, MARRONE S, NARDONE R, et al. Towards railway virtual coupling[C]//IEEE. 2018 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles and International Transportation Electrification Conference (ESARS-ITEC). New York: IEEE, 2018: 1-6.
    [3]
    曹源, 温佳坤, 马连川. 重大疫情下的列车动态编组与调度[J]. 交通运输工程学报, 2020, 20(3): 120-128. doi: 10.19818/j.cnki.1671-1637.2020.03.011

    CAO Yuan, WEN Jia-kun, MA Lian-chuan. Dynamic marshalling and scheduling of trains in major epidemics[J]. Journal of Traffic and Transportation Engineering, 2020, 20(3): 120-128. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.03.011
    [4]
    BOCK U, BIKKER G. Design and development of a future freight train concept—"virtually coupled train formations"[J]. IFAC Proceedings Volumes, 2000, 33(9): 395-400. doi: 10.1016/S1474-6670(17)38176-4
    [5]
    STÄNDER T, DREWES J, BRAUN I, et al. Operational and safety concepts for railway operation with virtual train-sets[J]. IFAC Proceedings Volumes, 2006, 39(12): 261-266. doi: 10.3182/20060829-3-NL-2908.00046
    [6]
    DUAN Hua-yu, SCHMID F. Optimised headway distance moving block with capacity analysis[C]//IEEE. 2018 International Conference on Intelligent Rail Transportation (ICIRT). New York: IEEE, 2018: 1-5.
    [7]
    刘岭. 基于虚拟耦合的列车群体智能控制技术研究及展望[J]. 铁路通信信号工程技术, 2020, 17(2): 1-9. doi: 10.3969/j.issn.1673-4440.2020.02.001

    LIU Ling. Research and prospect of intelligent control technology for virtually coupled train formation[J]. Railway Signalling and Communication, 2020, 17(2): 1-9. (in Chinese) doi: 10.3969/j.issn.1673-4440.2020.02.001
    [8]
    KAVATHEKAR P, CHEN Y Q. Vehicle platooning: a brief survey and categorization[C]//ASME. Proceedings of ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Washington DC: ASME, 2011: 829-845.
    [9]
    刘亚飞. 干扰条件下虚拟编组列车队形稳定的控制方法[D]. 北京: 北京交通大学, 2022.

    LIU Ya-fei. Stable platoon control for virtually coupled train set under interference conditions[D]. Beijing: Beijing Jiaotong University, 2022. (in Chinese)
    [10]
    NAUS G J L, VUGTS R P A, PLOEG J, et al. String-stable CACC design and experimental validation: a frequency-domain approach[J]. IEEE Transactions on Vehicular Technology, 2010, 59(9): 4268-4279. doi: 10.1109/TVT.2010.2076320
    [11]
    KNORN S, DONAIRE A, AGÜERO J C, et al. Passivity-based control for multi-vehicle systems subject to string constraints[J]. Automatica, 2014, 50(12): 3224-3230. doi: 10.1016/j.automatica.2014.10.038
    [12]
    朱旭, 张泽华, 闫茂德. 含输入时延与通信时延的车辆队列PID控制系统稳定性[J]. 交通运输工程学报, 2022, 22(3): 184-198. doi: 10.19818/j.cnki.1671-1637.2022.03.015

    ZHU Xu, ZHANG Ze-hua, YAN Mao-de. Stability of PID control system for vehicle platoon with input delay and communication delay[J]. Journal of Traffic and Transportation Engineering, 2022, 22(3): 184-198. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2022.03.015
    [13]
    FELEZ J, KIM Y, BORRELLI F. A model predictive control approach for virtual coupling in railways[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(7): 2728-2739. doi: 10.1109/TITS.2019.2914910
    [14]
    LIU Ya-fei, ZHOU Yang, SU Shuai, et al. An analytical optimal control approach for virtually coupled high-speed trains with local and string stability[J]. Transportation Research Part C: Emerging Technologies, 2021, 125: 102886. doi: 10.1016/j.trc.2020.102886
    [15]
    张友兵, 刘岭. 基于虚拟编组的列车控制系统研究[J]. 铁道工程学报, 2022, 39(3): 94-100.

    ZHANG You-bing, LIU Ling. Research on the train control system based on virtual[J]. Journal of Railway Engineering, 2022, 39(3): 94-100. (in Chinese)
    [16]
    宋志丹, 徐效宁, 李辉, 等. 面向虚拟编组的列控技术研究[J]. 铁道标准设计, 2019, 63(6): 155-159.

    SONG Zhi-dan, XU Xiao-ning, LI Hui, et al. Study on virtual-coupling-orientated train control technique[J]. Railway Standard Design, 2019, 63(6): 155-159. (in Chinese)
    [17]
    SU Shuai, LIU Wen-tao, ZHU Qing-yang, et al. A cooperative collision-avoidance control methodology for virtual coupling trains[J]. Accident Analysis and Prevention, 2022, 173: 106703. doi: 10.1016/j.aap.2022.106703
    [18]
    SU Shuai, SHE Jiang-feng, WANG Di, et al. A stabilized virtual coupling scheme for a train set with heterogeneous braking dynamics capability[J]. Transportation Research Part C: Emerging Technologies, 2023, 146: 103947. doi: 10.1016/j.trc.2022.103947
    [19]
    XUN Jing, LI Yan-yan, LIU Rong-hui, et al. A survey on control methods for virtual coupling in railway operation[J]. IEEE Open Journal of Intelligent Transportation Systems, 2022, 3: 838-855. doi: 10.1109/OJITS.2022.3228077
    [20]
    WU Qing, GE Xiao-hua, HAN Qing-long, et al. Railway virtual coupling: a survey of emerging control techniques[J]. IEEE Transactions on Intelligent Vehicles, 2023, 8(5): 3239-3255.
    [21]
    WANG Xi, HU Ming-yao, WANG Hong-wei, et al. Formation control for virtual coupling trains with parametric uncertainty and unknown disturbances[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2023, 70(9): 3429-3433.
    [22]
    LIU Yu, OU Dong-xiu, YANG Yuan-xiang, et al. A method for maintaining virtually coupled states of train convoys[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2023, 237(2): 243-252.
    [23]
    WANG Hong-wei, ZHAO Qian-qian, LIN Si-yu, et al. A reinforcement learning empowered cooperative control approach for ⅡoT-based virtually coupled train sets[J]. IEEE Transactions on Industrial Informatics, 2021, 17(7): 4935-4945.
    [24]
    XUN Jing, YIN Jia-teng, LIU Rong-hui, et al. Cooperative control of high-speed trains for headway regulation: a self-triggered model predictive control based approach[J]. Transportation Research Part C: Emerging Technologies, 2019, 102: 106-120.
    [25]
    CHEN Ming-liang, XUN Jing, LIU Ya-fei. A coordinated collision mitigation approach for virtual coupling trains by using model predictive control[C]//IEEE. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC). New York: IEEE, 2020: 1-6.
    [26]
    SU Shai, SHE Jiang-feng, LI Kai-cheng, et al. A nonlinear safety equilibrium spacing-based model predictive control for virtually coupled train set over gradient terrains[J]. IEEE Transactions on Transportation Electrification, 2021, 8(2): 2810-2824.
    [27]
    XUN Jing, CHEN Ming-liang, LIU Ya-fei, et al. An overspeed protection mechanism for virtual coupling in railway[J]. IEEE Access, 2020, 8: 187400-187410.
    [28]
    杨辉, 张芳, 张坤鹏, 等. 基于分布式模型的动车组预测控制方法[J]. 自动化学报, 2014, 40(9): 1912-1921.

    YANG Hui, ZHANG Fang, ZHANG Kun-peng, et al. Predictive control using a distributed model for electric multiple unit[J]. Acta Automatica Sinica, 2014, 40(9): 1912-1921. (in Chinese)
    [29]
    李中奇, 金柏, 杨辉, 等. 高速动车组强耦合模型的分布式滑模控制策略[J]. 自动化学报, 2020, 46(3): 495-508.

    LI Zhong-qi, JIN Bai, YANG Hui, et al. Distributed sliding mode control strategy for high-speed EMUs with strong coupling model[J]. Acta Automatica Sinica, 2019, 46(3): 495-508. (in Chinese)
    [30]
    赵凯辉, 邱鹏旗, 张昌凡, 等. 高速列车分布式速度协同跟踪控制方法研究[J]. 电子测量与仪器学报, 2022, 36(9): 12-20.

    ZHAO Kai-hui, QIU Peng-qi, ZHANG Chang-fan, et al. Research on distributed speed coordinated tracking control for high-speed train[J]. Journal of Electronic Measurement and Instrument, 2022, 36(9): 12-20. (in Chinese)
    [31]
    赵超轮, 戴邵武, 赵国荣, 等. 基于分布式模型预测控制的无人机编队控制[J]. 控制与决策, 2022, 37(7): 1763-1771.

    ZHAO Chao-lun, DAI Shao-wu, ZHAO Guo-rong, et al. Formation control of multi-UAV based on distributed model predictive control algorithm[J]. Control and Decision, 2022, 37(7): 1763-1771. (in Chinese)
    [32]
    陈龙, 何德峰, 李壮. 约束非线性车辆队列分布式多目标模型预测控制[J]. 控制与决策, 2022, 37(12): 3122-3128.

    CHEN Long, HE De-feng, LI Zhuang. Distributed multi-objective model predictive control for constrained nonlinear vehicle platoons[J]. Control and Decision, 2022, 37(12): 3122-3128. (in Chinese)
    [33]
    戴邵武, 赵超轮, 李飞, 等. 一种多约束下无人机编队的模型预测控制算法[J]. 控制与决策, 2023, 38(3): 706-714.

    DAI Shao-wu, ZHAO Chao-lun, LI Fei, et al. An algorithm of model predictive control for formation control of a multi-UAV system considering multiple constraints[J]. Control and Decision, 2023, 38(3): 706-714. (in Chinese)
    [34]
    LIU Ya-fei, LIU Rong-hui, WEI Chong-feng, et al. Distributed model predictive control strategy for constrained high-speed virtually coupled train set[J]. IEEE Transactions on Vehicular Technology, 2021, 71(1): 171-183.
    [35]
    李中奇, 周靓, 杨辉, 等. 基于预测控制的动车组迭代学习控制方法[J]. 交通运输工程学报, 2023, 23(1): 280-290. doi: 10.19818/j.cnki.1671-1637.2023.01.021

    LI Zhong-qi, ZHOU Liang, YANG Hui, et al. Iterative learning control method for EMUs based on predictive control[J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 280-290. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2023.01.021
    [36]
    LIU Ya-fei, ZHOU Yang, SU Shuai, et al. Control strategy for stable formation of high-speed virtually coupled trains with disturbances and delays[J]. Computer-Aided Civil and Infrastructure Engineering, 2023, 38(5): 621-639.
    [37]
    罗啸林, 唐涛, 林炳跃, 等. 一种缩短虚拟编组列车追踪间距的鲁棒模型预测控制方法[J]. 铁道学报, 2023, 45(8): 68-76.

    LUO Xiao-lin, TANG Tao, LIN Bing-yue, et al. A robust model predictive control method to shorten the tracking distance of virtual marshalling trains[J]. Journal of the China Railway Society, 2023, 45(8): 68-76. (in Chinese)
    [38]
    SHANGGUAN Wei, LUO Rui, SONG Hong-yu, et al. High-speed train platoon dynamic interval optimization based on resilience adjustment strategy[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 23(5): 4402-4414.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (11) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return