Volume 24 Issue 6
Dec.  2024
Turn off MathJax
Article Contents
LI Cong-ying, ZHANG Hong-tao, LI Kun, ZHANG Da-peng, JIA Jin-xiu, ZHAO Song-yang, HE Yuan. Review on travel quality evaluation methods for urban bicycle traffic system[J]. Journal of Traffic and Transportation Engineering, 2024, 24(6): 43-65. doi: 10.19818/j.cnki.1671-1637.2024.06.003
Citation: LI Cong-ying, ZHANG Hong-tao, LI Kun, ZHANG Da-peng, JIA Jin-xiu, ZHAO Song-yang, HE Yuan. Review on travel quality evaluation methods for urban bicycle traffic system[J]. Journal of Traffic and Transportation Engineering, 2024, 24(6): 43-65. doi: 10.19818/j.cnki.1671-1637.2024.06.003

Review on travel quality evaluation methods for urban bicycle traffic system

doi: 10.19818/j.cnki.1671-1637.2024.06.003
Funds:

National Natural Science Foundation of China 72101255

Natural Science Basic Research Program of Shaanxi Province 2020JM-478

Humanities and Social Sciences Research Project of Ministry of Education 21YJC790157

More Information
  • Author Bio:

    LI Cong-ying(1977-), female, professor, PhD, licongying@126.com

  • Corresponding author: ZHANG Da-peng(1989-), male, associate professor, PhD, dapengzhang@ruc.edu.cn
  • Received Date: 2024-05-23
  • Publish Date: 2024-12-25
  • In order to investigate the influencing factors of travel quality for urban bicycle traffic system, a comprehensive review of the evaluation methods was carried out from the aspects of both road facilities and road networks. In the evaluation of road facilities, factors such as bicycle traffic flow, bicycle lane design elements, bicycle travel environment, and cyclist perception were considered, and evaluation methods such as bicycle lane passing capacity, bicycle lane service level, bicycle lane safety evaluation, cyclist stress, and cyclist satisfaction were established. In the evaluation of road networks, topological analysis methods such as complex networks and space syntax were applied, and evaluation methods such as bicycle accessibility and bikeability were established. Research results show that in the evaluation method of road facilities, the evaluation subject shifts from bicycles to multimodal transportation, and the evaluation metrics consider the impact of motor vehicles, buses, pedestrians, and other factors on cycling. The evaluation perspective transitions from focusing on road designers to cyclists, progressively substituting designer experiences with cyclist perceptions to determine evaluation levels. The data of cyclist perception is obtained by questionnaires, laboratory videos, field experiments, and virtual environment experiments, and the modeling methods are mainly discrete choice models, statistical analysis, linear regression models, and structural equation models. The research focuses on the measurement method and influencing mechanism of psychological perception. The influencing mechanism of the physiological perception of cyclists still needs to be studied in depth, and the influencing mechanism needs to be refined by taking into account individual differences. In the evaluation method of road network, the topological analysis method mainly based on complex network and spatial syntax verifies the influence of the topological relationship of road networks on the travel frequency of cyclists. Bicycle accessibility takes into account the influence of cycling distance and travel destinations on cycling, and bikeability comprehensively considers the influence of road facilities and road network structure on cycling demand. The synergistic mechanism of road facilities and road network characteristics still needs to be studied in depth. In the future, it is necessary to improve the evaluation system for road facilities of bicycles at all stages and establish synergistic evaluation and optimization methods that consider both road facilities and road network structure, and provide theoretical references for improving the travel quality of bicycle traffic systems.

     

  • loading
  • [1]
    KRAUS S, KOCH N. Provisional COVID-19 infrastructure induces large, rapid increases in cycling[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(15): e2024399118.
    [2]
    QIN Y, KARIMI H A. Evolvement patterns of usage in a medium-sized bike-sharing system during the COVID-19 pandemic[J]. Sustainable Cities and Society, 2023, 96: 104669. doi: 10.1016/j.scs.2023.104669
    [3]
    The City of Copenhagen Technical and Environmental Administration Traffic Department. Good, better, best—the city of copenhagen's bicycle strategy 2011-2025[R]. Copenhagen: The City of Copenhagen Technical and Environmental Administration Traffic Department, 2011.
    [4]
    French Ministry of Ecological and Inclusive Transition. Bicycle and active mobilities plan[R]. Paris: French Ministry of Ecological and Inclusive Transition, 2018.
    [5]
    COLLI E, KÜSTER F, ŽGANEC M. The state of national cycling strategies in Europe[R]. Brussels: European Cyclists' Federation, 2022.
    [6]
    SZELL M, MIMAR S, PERLMAN T, et al. Growing urban bicycle networks[J]. Scientific Reports, 2022, 12: 6765. doi: 10.1038/s41598-022-10783-y
    [7]
    YANG Qi-yao, CAI Jun, HUANG Jian-zhong. A research on bikeway network planning and design strategies for travel quality improvements[J]. Urban Planning Forum, 2019, 6(6): 72-80. (in Chinese)
    [8]
    MA L, ETTEMA D, YE R N. Determinants of bicycling for transportation in disadvantagedneighbourhoods: evidence from Xi'an, China[J]. Transportation Research Part A: Policy and Practice, 2021, 145: 103-117. doi: 10.1016/j.tra.2021.01.009
    [9]
    CHEVALIER A, CHARLEMAGNE M, XU L Q. Bicycle acceptance on campus: influence of the built environment and shared bikes[J]. Transportation Research Part D: Transport and Environment, 2019, 76: 211-235. doi: 10.1016/j.trd.2019.09.011
    [10]
    CONTÒ C, BIANCHI N. E-bike motor drive: a review of configurations and capabilities[J]. Energies, 2022, 16(1): 160. doi: 10.3390/en16010160
    [11]
    KAZEMZADEH K, RONCHI E. From bike to electric bike level-of-service[J]. Transport Reviews, 2022, 42(1): 6-31. doi: 10.1080/01441647.2021.1900450
    [12]
    BAI L, LIU P, CHAN C Y, et al. Estimating level of service of mid-block bicycle lanes considering mixed traffic flow[J]. Transportation Research Part A: Policy and Practice, 2017, 101: 203-217. doi: 10.1016/j.tra.2017.04.031
    [13]
    OESCHGER G, CARROLL P, CAULFIELD B. Micromobility and public transport integration: the current state of knowledge[J]. Transportation Research Part D: Transport and Environment, 2020, 89: 102628. doi: 10.1016/j.trd.2020.102628
    [14]
    BUEHLER R, DILL J. Bikeway networks: a review of effects on cycling[J]. Transport Reviews, 2016, 36(1): 9-27. doi: 10.1080/01441647.2015.1069908
    [15]
    MCLEOD D S. Multimodal arterial level of service[C]//TRB. Transportation Research E-Circular E-C018: 4th International Symposium on Highway Capacity. Washington DC: TRB, 2000: 221-233.
    [16]
    TRB. Highway capacity manual 2000[R]. Washington DC: TRB, 2000.
    [17]
    TRB. Highway capacity manual 2010[R]. Washington DC: TRB, 2010.
    [18]
    TRB. Highway capacity manual 2016[R]. Washington DC: TRB, 2016.
    [19]
    TRB. Highway capacity manual 2022[R]. Washington DC: TRB, 2022.
    [20]
    PENG Rui, YANG Pei-kun. The basic model of bicycle traffic flow[J]. Journal of Tongji University (Natural Science), 1993, 21(4): 463-468. (in Chinese)
    [21]
    WEI Heng, REN Fu-tian, LIU Xiao-ming. Research on the relationship between bicycle traveling state and bicycle road capacity[J]. China Journal of Highway and Transport, 1993, 6(4): 60-64, 71. (in Chinese)
    [22]
    SHAN Xiao-feng, WANG Wei, WANG Hao, et al. Properties of bicycle flow in non-congested road[J]. Computer and Communications, 2006, 24(6): 41-43, 64. (in Chinese)
    [23]
    LIANG Chun-yan. Study on characteristics and application of bicycle traffic flow[D]. Changchun: Jilin University, 2007. (in Chinese)
    [24]
    LIU Jin-guang, YU Quan, RONG Jian, et al. Traffic characteristics research of the pedestrians and bicycles conglomeration at signalized intersection[J]. Journal of Beijing University of Technology, 2010, 36(2): 229-234. (in Chinese)
    [25]
    YU Quan, SHI Li-ping, LI Ning. Passing stage division of bicycle groups at signalized intersection[J]. Journal of Transportation Systems Engineering and Information Technology, 2011, 11(4): 135-139. (in Chinese) doi: 10.3969/j.issn.1009-6744.2011.04.021
    [26]
    NAGEL K, SCHRECKENBERG M. A cellular automaton model for freeway traffic[J]. Journal De Physique I, 1992, 2(12): 2221-2229. doi: 10.1051/jp2:1992262
    [27]
    YAO D Y, ZHANG Y, LI L, et al. Behavior modeling and simulation for conflicts in vehicles-bicycles mixed flow[J]. IEEE Intelligent Transportation Systems Magazine, 2009, 1(2): 25-30. doi: 10.1109/MITS.2009.933863
    [28]
    ZHANG Xing-qiang, WANG Ying, HU Qing-hua. Research and simulation on cellular automaton model of mixed traffic flow at intersection[J]. Acta Physica Sinica, 2014, 63(1): 90-97. (in Chinese) doi: 10.3969/j.issn.1000-0364.2014.01.015
    [29]
    JIN S, QU X B, XU C, et al. An improved multi-value cellular automata model for heterogeneous bicycle traffic flow[J]. Physics Letters A, 2015, 379(39): 2409-2416. doi: 10.1016/j.physleta.2015.07.031
    [30]
    ZHANG Xiao-xing. Based on multi-value electric bicycle-bicycle traffic flow characteristics of cellular automata simulation study[D]. Chongqing: Chongqing Jiaotong University, 2016. (in Chinese)
    [31]
    LI Li-shan, LI Bing, CHENG Wei. Mixed bicycle traffic flow model based on space split and perceived density[J]. Journal of Transportation Systems Engineering and Information Technology, 2019, 19(1): 104-110, 150. (in Chinese)
    [32]
    HELBING D, MOLNÁR P. Social force model for pedestrian dynamics[J]. Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1995, 51(5): 4282-4286.
    [33]
    LIANG Xiao, MAO Bao-hua. XU Qi. Psychological-physical force model for bicycle dynamics[J]. Journal of Transportation Systems Engineering and Information Technology, 2012, 12(2): 91-97. (in Chinese) doi: 10.3969/j.issn.1009-6744.2012.02.014
    [34]
    DONG He-ying. Simulation research on two-way bicycle traffic flow based on social force model[D]. Xi'an: Chang'an University, 2021. (in Chinese)
    [35]
    NI Ying, LI Yi-xin, LI Xu-hong, et al. Modeling and simulation of the non-motorized traffic flow on physically separated bicycle roadways[J]. Journal of Tongji University (Natural Sciences), 2019, 47(6): 778-786. (in Chinese)
    [36]
    YAN X C, CHEN J, BAI H, et al. Influence factor analysis of bicycle free-flow speed for determining the design speeds of separated bicycle lanes[J]. Information, 2020, 11(10): 459. doi: 10.3390/info11100459
    [37]
    BOTMA H. Method to determine level of service for bicycle paths and pedestrian-bicycle paths[J]. Transportation Research Record, 1995(1502): 38-44.
    [38]
    DIXON L B. Bicycle and pedestrian level-of-service performance measures and standards for congestion management systems[J]. Transportation Research Record, 1996(1538): 1-9.
    [39]
    LANDIS B W, VATTIKUTI V R, BRANNICK M T. Real-time human perceptions: toward a bicycle level of service[J]. Transportation Research Record, 1997(1578): 119-126.
    [40]
    LANDIS B W, VATTIKUTI V R, OTTENBERG R M, et al. Intersection level of service for the bicycle through movement[J]. Transportation Research Record, 2003(1828): 101-106.
    [41]
    PETRITSCH T A, LANDIS B W, HUANG H F, et al. Bicycle level of service for arterials[J]. Transportation Research Record, 2007(2031): 34-42.
    [42]
    DOWLING R. Multimodal level of service analysis for urban streets: users guide[R]. Washington DC: Transportation Research Board of the National Academies, 2008.
    [43]
    LI Zhi-bin, WANG Wei, SHAN Xiao-feng, et al. Analysis of bicycle passing events for LOS evaluation on physically separated bicycle roadways in China[C]//TRB. TRB 2010 Annual Meeting. Washington DC: TRB, 2010: 1-16.
    [44]
    YU Hao, CHEN Jun, XIE Zhi-quan. Level of service model on urban cycle-pedestrian shared road[J]. Urban Transport of China, 2012, 10(1): 75-79, 60. (in Chinese) doi: 10.3969/j.issn.1672-5328.2012.01.011
    [45]
    FANG Xue-li, CHEN Xiao-hong, YE Jian-hong. Method of classification criteria about quality of service for bicycle lanes[J]. Journal of Tongji University (Natural Science), 2016, 44(10): 1573-1578. (in Chinese) doi: 10.11908/j.issn.0253-374x.2016.10.015
    [46]
    College of Transportation Engineering, Tongji University. Standardized processes and methods to improve the non-motorized travel environment[J]. China Highway, 2017(11): 124-125. (in Chinese) doi: 10.3969/j.issn.1006-3897.2017.11.047
    [47]
    BEURA S K, KUMAR N K, BHUYAN P K. Level of service for bicycle through movement at signalized intersections operating under heterogeneous traffic flow conditions[J]. Transportation in Developing Economies, 2017, 3(2): 21. doi: 10.1007/s40890-017-0051-z
    [48]
    BEURA S K, CHELLAPILLA H, BHUYAN P K. Urban road segment level of service based on bicycle users' perception under mixed traffic conditions[J]. Journal of Modern Transportation, 2017, 25(2): 90-105. doi: 10.1007/s40534-017-0127-9
    [49]
    MAJUMDAR B B, MITRA S. Development of level of service criteria for evaluation of bicycle suitability[J]. Journal of Urban Planning and Development, 2018, 144(2): 04018012. doi: 10.1061/(ASCE)UP.1943-5444.0000432
    [50]
    OKON I E, MORENO C A. Bicycle level of service model for the Cycloruta, Bogota, Colombia[J]. Romanian Journal of Transport Infrastructure, 2019, 8(1): 1-33. doi: 10.2478/rjti-2019-0001
    [51]
    ZHANG S, LIANG J, WANG Z W. Evaluation method for bicycle lane level of service based on user perception and capacity simulation[J]. Journal of Applied Science and Engineering, 2019, 22(3): 539-548.
    [52]
    BEURA S K, KUMAR K V, SUMAN S, et al. Service quality analysis of signalized intersections from the perspective of bicycling[J]. Journal of Transport and Health, 2020, 16: 100827. doi: 10.1016/j.jth.2020.100827
    [53]
    CHAI Pan. Bicyclists' travel environments perception and travel behavior of urban streets[D]. Xi'an: Xi'an University of Architecture and Technology, 2016. (in Chinese)
    [54]
    VIVEK A K, MOHAPATRA S S. Level of service analysis of rail road grade crossing from the perspective of walking and bicycling: a perception based study[J]. Transportation Planning and Technology, 2023, 46(4): 499-524. doi: 10.1080/03081060.2023.2201595
    [55]
    WILLIAM JEFFREY D. Bicycle safety evaluation[D]. Auburn: Auburn University. 1987.
    [56]
    EPPERSON B. Evaluating suitability of roadways for bicycle use: toward a cycling level-of-service standard[J]. Transportation Research Record, 1994(1438): 9-16.
    [57]
    LANDIS B W. Bicycle interaction hazard score: a theoretical model[J]. Transportation Research Record, 1994(1438): 3-8.
    [58]
    HARKEY D L, STEWART J R. Evaluation of shared-use facilities for bicycles and motor vehicles[J]. Transportation Research Record, 1997(1578): 111-118.
    [59]
    NOËL N, LECLERC C, LEE-GOSSELIN M. CRC index: compatibility of roads for cyclists in rural and urban fringe areas[C]//TRB. TRB 2003 Annual Meeting. Washington DC: TRB, 2003: 1-20.
    [60]
    JONES E G, CARLSON T D. Development of bicycle compatibility index for rural roads in Nebraska[J]. Transportation Research Record, 2003(1828): 124-132.
    [61]
    RIVERA OLSSON S, ELLDÉR E. Are bicycle streets cyclist-friendly? Micro-environmental factors for improving perceived safety when cycling in mixed traffic[J]. Accident Analysis and Prevention, 2023, 184: 107007. doi: 10.1016/j.aap.2023.107007
    [62]
    ALLEN-MUNLEY C. Development of a multivariate logistic model to predict bicycle route safety in urban areas[D]. Newark: NewJersey Institute of Technology, 2003.
    [63]
    CARTER D L, HUNTER W W, ZEGEER C V, et al. Bicyclist intersection safety index[J]. Transportation Research Record, 2007(2031): 18-24.
    [64]
    AKAR G, WANG K L. Street intersection characteristics and their impacts on perceived bicycling safety[R]. Columbus: Ohio Department of Transportation, 2018.
    [65]
    ADINARAYANA B, MIR M S. Development of bicycle safety index models for safety of bicycle flow at 3-legged junctions on urban roads under mixed traffic conditions[J]. Transportation Research Procedia, 2020, 48: 1227-1243. doi: 10.1016/j.trpro.2020.08.145
    [66]
    ASADI-SHEKARI Z, MOEINADDINI M, ZALY SHAH M. A bicycle safety index for evaluating urban street facilities[J]. Traffic Injury Prevention, 2015, 16(3): 283-288. doi: 10.1080/15389588.2014.936010
    [67]
    EREN E, AVSAR E, YILDIRIM Z B, et al. Investigation of urban bicycle roads in terms of bicycle compatibility[C]//ENAR. 2nd International Congress on Engineering and Architecture. Wakefield: ENAR, 2019: 918-926.
    [68]
    ABDULLAH Y A, AHMAD RAZI S A, NASRUDIN N, et al. Assessing cycle lanes using the bicycle compatibility index (BCI) in ShahAlam, Selangor, Malaysia[J]. Planning Malaysia, 2020, 18(4): 128-143.
    [69]
    TIEDEMAN K A. Do complete streets offer cyclists high levels of service? Applying David Harkey's bicycle compatibility index to Seattle and Copenhagen's complete street networks[D]. Washington DC: University of Washington, 2021.
    [70]
    DAI Ji-feng, ZHAO Xian-lan, LIN Jian-xin, et al. Study on the level of service for urban bicycle road segment[J]. Journal of Chang'an University (Natural Sciences), 2015, 35(S): 26-31. (in Chinese)
    [71]
    CHEN C. Crowdsourcing data-driven development of bicycle safety performance functions (SPFs): microscopic and macroscopic scales[D]. Corvallis: Oregon State University, 2017.
    [72]
    LI Y, ZHOU W H, NAN S R, et al. Redesign of the cross-section of bicycle lanes considering electric bicycles[J]. Proceedings of the Institution of Civil Engineers—Transport, 2017, 170(5): 255-266. doi: 10.1680/jtran.16.00175
    [73]
    LI Yan, NAN Si-rui, HU Wen-bin, et al. Lane transgressing risk model of electric bicycle on marking separation road section[J]. Journal of Chongqing Jiaotong University (Natural Sciences), 2021, 40(2): 13-20. (in Chinese) doi: 10.3969/j.issn.1674-0696.2021.02.03
    [74]
    CHEN Xiao-hong, YUE Li-sheng-sa, YANG Kui. Safety evaluation of overtaken bicycle on a shared bicycle path[J]. Journal of Tongji University (Natural Science), 2017, 45(2): 215-222. (in Chinese)
    [75]
    NORDBACK K L, MARSHALL W E. Improving bicycle safety with more bikers: an intersection-level study[C]//ASCE. Proceedings of the Green Streets and Highways 2010 Conference. Reston: ASCE, 2010: 135-146.
    [76]
    NAZEMI M, VAN EGGERMOND M A B, ERATH A, et al. Studying bicyclists' perceived level of safety using a bicycle simulator combined with immersive virtual reality[J]. Accident Analysis and Prevention, 2021, 151: 105943. doi: 10.1016/j.aap.2020.105943
    [77]
    BLANC B, FIGLIOZZI M. Modeling the impacts of facility type, trip characteristics, and trip stressors on cyclists' comfort levels utilizing crowdsourced data[J]. Transportation Research Record, 2016, 2587(1): 100-108. doi: 10.3141/2587-12
    [78]
    SCOTT M J C, HURNALL DD, PATTINSON W H. The Geelong bikeplan: practical planning for cyclists real needs[C]//The National Academies of Sciences. Australian Transport Research Forum, Fourth Annual Meeting. Washington DC: The National Academies of Sciences, 1978: 439-473.
    [79]
    SORTON A, WALSH T. Bicycle stress level as a tool to evaluate urban and suburban bicycle compatibility[J]. Transportation Research Record, 1994(1438): 17-24.
    [80]
    MEKURIA M C, FURTH P G, NIXON H. Low-stress bicycling and network connectivity[R]. San Jose: Mineta Transportation Institute Publications, 2012.
    [81]
    WANG H Z, PALM M, CHEN C, et al. Does bicycle network level of traffic stress (LTS) explain bicycle travel behavior? Mixed results from an Oregon case study[J]. Journal of Transport Geography, 2016, 57: 8-18. doi: 10.1016/j.jtrangeo.2016.08.016
    [82]
    BOETTGE B, HALL D M, CRAWFORD T. Assessing the bicycle network in St. Louis: a place-based user-centered approach[J]. Sustainability, 2017, 9(2): 241. doi: 10.3390/su9020241
    [83]
    MORAN S K, TSAY W, LAWRENCE S, et al. Lowering bicycle stress one link at a time: where should we invest in infrastructure?[J]. Transportation Research Record, 2018, 2672(36): 33-41. doi: 10.1177/0361198118783109
    [84]
    RODRIGUES M R, RODRIGUES DA SILVA A N, TEIXEIRA I P. Assessing the applicability of the cyclists' level of traffic stress (LTS) classification to a medium-sized city in a developing country[J]. Journal of Transport and Health, 2022, 24: 101321. doi: 10.1016/j.jth.2021.101321
    [85]
    LIM T, THOMPSON J, TIAN L M, et al. A transactional model of stress and coping applied to cyclist subjective experiences[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2023, 96: 155-170. doi: 10.1016/j.trf.2023.05.013
    [86]
    AVILA-PALENCIA I, DE NAZELLE A, COLE-HUNTER T, et al. The relationship between bicycle commuting and perceived stress: a cross-sectional study[J]. BMJ Open, 2017, 7(6): e013542. doi: 10.1136/bmjopen-2016-013542
    [87]
    CAVIEDES A, FIGLIOZZI M. Modeling the impact of traffic conditions and bicycle facilities on cyclists' on-road stress levels[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2018, 58: 488-499. doi: 10.1016/j.trf.2018.06.032
    [88]
    SHAFER C S, LEE B, TURNER S, et al. Evaluation of bicycle and pedestrian facilities: user satisfaction and perceptions on three shared use trails in Texas[R]. College Station: Texas Transportation Institute, 1999.
    [89]
    PAIGE WILLIS D, MANAUGH K, EL-GENEIDY A. Uniquely satisfied: exploring cyclist satisfaction[J]. Transportation Research Part F: Traffic Psychology andBehaviour, 2013, 18: 136-147. doi: 10.1016/j.trf.2012.12.004
    [90]
    QIAN Jia, WANG De-gen, NIU Yu. Analysis of the influencing factors of urban residents to use urban public bikes: a case study of Suzhou[J]. Geographical Research, 2014, 33(2): 358-371. (in Chinese)
    [91]
    ZHU Tong, YANG Chen-xuan, GUO Chun-lin, et al. Satisfaction model of cyclists in urban road environment[J]. Journal of Chongqing Jiaotong University (Natural Sciences), 2018, 37(2): 102-106. (in Chinese) doi: 10.3969/j.issn.1674-0696.2018.02.16
    [92]
    MAIOLI H C, DE CARVALHO R C, DE MEDEIROS D D. SERVBIKE: riding customer satisfaction of bicycle sharing service[J]. Sustainable Cities and Society, 2019, 50: 101680. doi: 10.1016/j.scs.2019.101680
    [93]
    ZHU Xin. Satisfaction and usage evaluation of city shared bicycle[J]. International Journal of Social Science and Education Research, 2020, 3(9): 227-235.
    [94]
    XU Jun, XU Min, ZHANG Li-shuo, et al. Research on construction and activation of cyclist satisfaction model[J]. Modern Urban Research, 2021, 36(5): 77-82. (in Chinese) doi: 10.3969/j.issn.1009-6000.2021.05.012
    [95]
    MOURATIDIS K, DE VOS J, YIANNAKOU A, et al. Sustainable transport modes, travel satisfaction, and emotions: evidence from car-dependent compact cities[J]. Travel Behaviour and Society, 2023, 33: 100613. doi: 10.1016/j.tbs.2023.100613
    [96]
    BERGSTRÖM A, MAGNUSSON R. Potential of transferring car trips to bicycle during winter[J]. Transportation Research Part A: Policy and Practice, 2003, 37(8): 649-666. doi: 10.1016/S0965-8564(03)00012-0
    [97]
    BRESSEL E, LARSON B J. Bicycle seat designs and their effect on pelvic angle, trunk angle, and comfort[J]. Medicine and Science in Sports and Exercise, 2003, 35(2): 327-332. doi: 10.1249/01.MSS.0000048830.22964.7c
    [98]
    YOSHIDA J, KAWAGOE N, KAWAMURA T. Improvement of bicycle riding comfort by reduction of seat vibration[J]. Journal of System Design and Dynamics, 2013, 7(3): 293-303. doi: 10.1299/jsdd.7.293
    [99]
    LIU Y S, TSAY T S, CHEN C P, et al. Simulation of riding a full suspension bicycle for analyzing comfort and pedaling force[J]. Procedia Engineering, 2013, 60: 84-90. doi: 10.1016/j.proeng.2013.07.061
    [100]
    LI Z B, WANG W, ZHANG Y Y, et al. Exploring factors influencing bicyclists' perception of comfort on bicycle facilities[C]//TRB. TRB 2012 Annual Meeting. Washington DC: TRB, 2012: 718-727.
    [101]
    AYACHI F S, DOREY J, GUASTAVINO C. Identifying factors of bicycle comfort: an online survey with enthusiast cyclists[J]. Applied Ergonomics, 2015, 46: 124-136. doi: 10.1016/j.apergo.2014.07.010
    [102]
    APASNORE P, ISMAIL K, KASSIM A. Bicycle-vehicle interactions at mid-sections of mixed traffic streets: examining passing distance and bicycle comfort perception[J]. Accident Analysis and Prevention, 2017, 106: 141-148. doi: 10.1016/j.aap.2017.05.003
    [103]
    ZHU S Y, ZHU F. Cycling comfort evaluation with instrumented probe bicycle[J]. Transportation Research Part A: Policy and Practice, 2019, 129: 217-231. doi: 10.1016/j.tra.2019.08.009
    [104]
    BEURA S K, CHELLAPILLA H, PANDA M, et al. Bicycle comfort level rating (BCLR) model for urban street segments in mid-sized cities of India[J]. Journal of Transport and Health, 2021, 20: 100971. doi: 10.1016/j.jth.2020.100971
    [105]
    YAMAGUCHI R, MEHMOOD F, YOSHIHISA T, et al. A bicycle navigation system for analyzing the comfort level of the cyclist[C]//ACM. 29th International Conference on Intelligent User Interfaces. New York: ACM, 2024: 37-40.
    [106]
    HÖLZEL C, HÖCHTL F, SENNER V. Cycling comfort on different road surfaces[J]. Procedia Engineering, 2012, 34: 479-484. doi: 10.1016/j.proeng.2012.04.082
    [107]
    THIGPEN C G, LI H, HANDY S L, et al. Modeling the impact of pavement roughness on bicycle ride quality[J]. Transportation Research Record, 2015, 2520(1): 67-77. doi: 10.3141/2520-09
    [108]
    MIAH S, KAPARIAS I, AYUB N, et al. Measuring cycle riding comfort in Southampton using an instrumented bicycle[C]//IEEE. 6th International Conference on Models and Technologies for Intelligent Transportation Systems. New York: IEEE, 2019: 8883328.
    [109]
    QIAN X D, MOORE J K, NIEMEIER D. Predicting bicycle pavement ride quality: sensor-based statistical model[J]. Journal of Infrastructure Systems, 2020, 26(3): 04020033. doi: 10.1061/(ASCE)IS.1943-555X.0000571
    [110]
    WAGE O, FEUERHAKE U, KOETSIER C, et al. Ride vibrations: towards comfort-based bicycle navigation[J]. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2020, 43(B4): 367-373.
    [111]
    ABBISS C R, LAURSEN P B. Models to explain fatigue during prolonged endurance cycling[J]. Sports Medicine, 2005, 35(10): 865-898. doi: 10.2165/00007256-200535100-00004
    [112]
    PIRES F O, SILVA-JÚNIOR F L, BRIETZKE C, et al. Mental fatigue alters cortical activation and psychological responses, impairing performance in a distance-based cycling trial[J]. Frontiers in Physiology, 2018, 9: 227. doi: 10.3389/fphys.2018.00227
    [113]
    LUCIA A, SAN JUAN A F, MONTILLA M, et al. In professional road cyclists, low pedaling cadences are less efficient[J]. Medicine and Science in Sports and Exercise, 2004, 36(6): 1048-1054. doi: 10.1249/01.MSS.0000128249.10305.8A
    [114]
    ABBISS C R, BURNETT A, NOSAKA K, et al. Effect of hot versus cold climates on power output, muscle activation, and perceived fatigue during a dynamic 100-km cycling trial[J]. Journal of Sports Sciences, 2010, 28(2): 117-125. doi: 10.1080/02640410903406216
    [115]
    PRIEGO QUESADA J I, PÉREZ-SORIANO P, LUCAS-CUEVAS A G, et al. Effect of bike-fit in the perception of comfort, fatigue and pain[J]. Journal of Sports Sciences, 2017, 35(14): 1459-1465. doi: 10.1080/02640414.2016.1215496
    [116]
    SALAM H, MARCORA S M, HOPKER J G. The effect of mental fatigue on critical power during cycling exercise[J]. European Journal of Applied Physiology, 2018, 118(1): 85-92. doi: 10.1007/s00421-017-3747-1
    [117]
    ZEUWTS L H R H, ILIANO E, SMITH M, et al. Mental fatigue delays visual searchbehaviour in young cyclists when negotiating complex traffic situations: a study in virtual reality[J]. Accident Analysis and Prevention, 2021, 161: 106387. doi: 10.1016/j.aap.2021.106387
    [118]
    XUE Jia-liang. Study on physiological and psychological characteristics and environmental quality perception mechanism of urban bicycle traffic travelers[D]. Xi'an: Xi'an University of Architecture and Technology, 2018. (in Chinese)
    [119]
    LI Cong-ying, YANG Yun-feng, SHAO Zhuang-zhuang, et al. Characteristics of urban cyclist perception of fatigue[J]. China Journal of Highway and Transport, 2018, 31(6): 291-298. (in Chinese) doi: 10.3969/j.issn.1001-7372.2018.06.016
    [120]
    LI Cong-ying, SHAO Zhuang-zhuang, FENG Shao-shuai, et al. Physiology, psychology and comprehensive loading perception models of cyclists[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 181-191. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.01.015
    [121]
    CREWE H, TUCKER R, NOAKES T D. The rate of increase in rating of perceived exertion predicts the duration of exercise to fatigue at a fixed power output in different environmental conditions[J]. European Journal of Applied Physiology, 2008, 103(5): 569-577. doi: 10.1007/s00421-008-0741-7
    [122]
    KAZEMZADEH K, BANSAL P. Electric bike level of service: a review and research agenda[J]. Sustainable Cities and Society, 2021, 75: 103413. doi: 10.1016/j.scs.2021.103413
    [123]
    DILL J, MOHR C, MA L. How can psychological theory help cities increase walking and bicycling?[J]. Journal of the American Planning Association, 2014, 80(1): 36-51. doi: 10.1080/01944363.2014.934651
    [124]
    ZHANG Hong. Characteristic analysis of urban public bicycle station based on complex network theory[D]. Jinan: Shandong Jianzhu University, 2018. (in Chinese)
    [125]
    WEI S, XU J G, MA H T. Exploring public bicycle network structure based on complex network theory and shortest path analysis: the public bicycle system in Yixing, China[J]. Transportation Planning and Technology, 2019, 42(3): 293-307. doi: 10.1080/03081060.2019.1576385
    [126]
    SABERI M, GHAMAMI M, GU Y, et al. Understanding the impacts of a public transit disruption on bicycle sharing mobility patterns: a case of Tube strike in London[J]. Journal of Transport Geography, 2018, 66: 154-166. doi: 10.1016/j.jtrangeo.2017.11.018
    [127]
    GAO Z, WEI S, WANG L, et al. Exploring the spatial-temporal characteristics of traditional public bicycle use in Yancheng, China: a perspective of time series cluster of stations[J]. Sustainability, 2020, 12(16): 6370. doi: 10.3390/su12166370
    [128]
    YIN Q Q, WANG Y Q, LIU J M. Importance node analysis of shared bicycle network based on degree and clustering coefficient[C]//ASCE. Proceedings of the 21st COTA International Conference of Transportation Professionals. Reston: ASCE, 2021: 1943-1949.
    [129]
    MENG F Y, ZHENG L L, DING T Q, et al. Understanding dockless bike-sharing spatiotemporal travel patterns: evidence from ten cities in China[J]. Computers, Environment and Urban Systems, 2023, 104: 102006. doi: 10.1016/j.compenvurbsys.2023.102006
    [130]
    HILLIER B. Spatial sustainability in cities: organic patterns and sustainable forms[C]//KTH. Proceedings of the 7th International Space Syntax Symposium. Royal Institute of Technology. Stockholm: KTH, 2009: K01.
    [131]
    LIU Z C, SONG Z Q, CHEN A, et al. Exploring bicycle route choice behavior with space syntax analysis[R]. Kalamazoo: Western Michigan University, 2016.
    [132]
    DAI X L, YU W B. Configurational exploration of pedestrian and cyclist movements: a case study of Hangzhou, China[J]. Journal of the Faculty of Architecture, 2014, 11(2): 119-130.
    [133]
    RAFORD N, CHIARADIA A, GIL J. Space syntax: the role of urban form in cyclist route choice in central London[C]//TRB. TRB 2007 Annual Meeting. Washington DC: TRB, 2007: 1-18.
    [134]
    LAW S, SAKR F L, MARTINEZ M. Measuring the changes in aggregate cycling patterns between 2003 and 2012 from a space syntax perspective[J]. Behavioral Sciences, 2014, 4(3): 278-300. doi: 10.3390/bs4030278
    [135]
    COOPER C H V. Using spatial network analysis to model pedal cycle flows, risk and mode choice[J]. Journal of Transport Geography, 2017, 58: 157-165. doi: 10.1016/j.jtrangeo.2016.12.003
    [136]
    ORELLANA D, GUERRERO M L. Exploring the influence of road network structure on the spatialbehaviour of cyclists using crowdsourced data[J]. Environment and Planning B: Urban Analytics and City Science, 2019, 46(7): 1314-1330. doi: 10.1177/2399808319863810
    [137]
    FERNANDES D, URBANO M R, KANASHIRO M. Routing for safer rides: a space syntax approach to predict bicycle collisions in a Brazilian city[J]. Urbe. Revista Brasileira de Gestão Urbana, 2021, 13: e20200106. doi: 10.1590/2175-3369.013.e20200106
    [138]
    KARCZEWSKI A M. Examining the effects of urban form factors, high-integrated streets, and topological choice on bicycle usage in rotterdam[D]. Groningen: University of Groningen, 2021.
    [139]
    WANG L, ZHOU K C, ZHANG S R, et al. Designing bike-friendly cities: interactive effects of built environment factors on bike-sharing[J]. Transportation Research Part D: Transport and Environment, 2023, 117: 103670. doi: 10.1016/j.trd.2023.103670
    [140]
    ZHENG J, BAI X F, WU Z R, et al. Research on the spatial behavior conflict in suburban village communities based on GPS tracking and cognitive mapping[J]. Journal of Asian Architecture and Building Engineering, 2022, 21(6): 2605-2620. doi: 10.1080/13467581.2021.1971680
    [141]
    LERMAN Y, ROFÈ Y, OMER I. Using space syntax to model pedestrian movement in urban transportation planning[J]. Geographical Analysis, 2014, 46(4): 392-410. doi: 10.1111/gean.12063
    [142]
    LUNDBERG B, WEBER J. Non-motorized transport and university populations: an analysis of connectivity and network perceptions[J]. Journal of Transport Geography, 2014, 39: 165-178. doi: 10.1016/j.jtrangeo.2014.07.002
    [143]
    BOISJOLY G, LACHAPELLE U, EL-GENEIDY A. Bicycle network performance: assessing the directness of bicycle facilities through connectivity measures, a Montreal, Canada case study[J]. International Journal of Sustainable Transportation, 2020, 14(8): 620-634. doi: 10.1080/15568318.2019.1595791
    [144]
    SEMLER C, SANDERS M, BUCK D, et al. The keys to connectivity: the district ofcolumbia's innovative approach to unlocking low-stress bicycle networks[J]. Transportation Research Record, 2018, 2672(36): 63-72. doi: 10.1177/0361198118798445
    [145]
    CHEN Jie, LU Feng, CHENG Chang-xiu. Advance in accessibility evaluation approaches and applications[J]. Progress in Geography, 2007, 26(5): 100-110. (in Chinese) doi: 10.3969/j.issn.1007-6301.2007.05.011
    [146]
    HANSEN W G. How accessibility shapes land use[J]. Journal of the American Institute of Planners, 1959, 25(2): 73-76. doi: 10.1080/01944365908978307
    [147]
    WACHS M, KUMAGAI T G. Physical accessibility as a social indicator[J]. Socio-Economic Planning Sciences, 1973, 7(5): 437-456. doi: 10.1016/0038-0121(73)90041-4
    [148]
    CERVERO R. Paradigm shift: from automobility to accessibility planning[J]. Urban Futures (Canberra), 1997(22): 9-20.
    [149]
    IACONO M, KRIZEK K J, EL-GENEIDY A. Measuring non-motorized accessibility: issues, alternatives, and execution[J]. Journal of Transport Geography, 2010, 18(1): 133-140. doi: 10.1016/j.jtrangeo.2009.02.002
    [150]
    CASE R B. Accessibility-based factors of travel odds: performance measures for coordination of transportation and land use to improve nondriver accessibility[J]. Transportation Research Record, 2011, 2242(1): 106-113. doi: 10.3141/2242-13
    [151]
    CHANDRA S, JIMENEZ J, RADHAKRISHNAN R. Accessibility evaluations for nighttime walking and bicycling for low-income shift workers[J]. Journal of Transport Geography, 2017, 64: 97-108. doi: 10.1016/j.jtrangeo.2017.08.010
    [152]
    WU X Y, LU Y, LIN Y Y, et al. Measuring the destination accessibility of cycling transfer trips in metro station areas: a big data approach[J]. International Journal of Environmental Research and Public Health, 2019, 16(15): 2641. doi: 10.3390/ijerph16152641
    [153]
    MURPHY B, OWEN A. Implementing low-stress bicycle routing in national accessibility evaluation[J]. Transportation Research Record, 2019, 2673(5): 240-249. doi: 10.1177/0361198119837179
    [154]
    WANG Qian-ying. Study on urban bicycle traffic accessibility based on travelers' physiological and psychological perception[D]. Xi'an: Xi'an University of Architecture and Technology, 2019. (in Chinese)
    [155]
    LI A Y, HUANG Y Z, AXHAUSEN K W. An approach to imputing destination activities for inclusion in measures of bicycle accessibility[J]. Journal of Transport Geography, 2020, 82: 102566. doi: 10.1016/j.jtrangeo.2019.102566
    [156]
    STANDEN C, CRANE M, GREAVES S, et al. How equitable are the distributions of the physical activity and accessibility benefits of bicycle infrastructure?[J]. International Journal for Equity in Health, 2021, 20(1): 208. doi: 10.1186/s12939-021-01543-x
    [157]
    RYAN J, PEREIRA R H M. What are we missing when we measure accessibility? Comparing calculated and self-reported accounts among older people[J]. Journal of Transport Geography, 2021, 93: 103086. doi: 10.1016/j.jtrangeo.2021.103086
    [158]
    WANG J Y, KWAN M P, CAO W P, et al. Assessing changes in job accessibility and commuting time under bike-sharing scenarios[J]. Transportmetrica A: Transport Science, 2024, 20(1): 2043950. doi: 10.1080/23249935.2022.2043950
    [159]
    Pedestrian and Bicycle Information Center. Bikeability checklist: how bikeable is your community?[R]. Washington DC: U.S. Department of Transportation, 2002.
    [160]
    KRENN P J, OJA P, TITZE S. Development of abikeability index to assess the bicycle-friendliness of urban environments[J]. Open Journal of Civil Engineering, 2015, 5(4): 451-459. doi: 10.4236/ojce.2015.54045
    [161]
    ARELLANA J, SALTARÍN M, LARRAÑAGA A M, et al. Developing an urbanbikeability index for different types of cyclists as a tool to prioritise bicycle infrastructure investments[J]. Transportation Research Part A: Policy and Practice, 2020, 139: 310-334. doi: 10.1016/j.tra.2020.07.010
    [162]
    SCHMID-QUERG J, KELER A, GRIGOROPOULOS G. The Munich bikeability index: a practical approach for measuring urban bikeability[J]. Sustainability, 2021, 13(1): 428. doi: 10.3390/su13010428
    [163]
    MCNEIL N. Bikeability and the 20-min neighborhood: how infrastructure and destinations influence bicycle accessibility[J]. Transportation Research Record, 2011, 2247(1): 53-63. doi: 10.3141/2247-07
    [164]
    LOWRY M, CALLISTER D, GRESHAM M, et al. Using bicycle level of service to assess community-wide bikeability[C]//TRB. TRB 2012 Annual Meeting. Washington DC: TRB, 2012: 1-15.
    [165]
    WINTERS M, BRAUER M, SETTON E M, et al. Mapping bikeability: a spatial tool to support sustainable travel[J]. Environment and Planning B: Planning and Design, 2013, 40(5): 865-883. doi: 10.1068/b38185
    [166]
    TRAN P T M, ZHAO M S, YAMAMOTO K, et al. Cyclists' personal exposure to traffic-related air pollution and its influence on bikeability[J]. Transportation Research Part D: Transport and Environment, 2020, 88: 102563. doi: 10.1016/j.trd.2020.102563
    [167]
    WYSLING L, PURVES R S. Where to improve cycling infrastructure? Assessing bicycle suitability andbikeability with open data in the city of Paris[J]. Transportation Research Interdisciplinary Perspectives, 2022, 15: 100648. doi: 10.1016/j.trip.2022.100648
    [168]
    FOSGERAU M, ŁUKAWSKA M, PAULSEN M, et al. Bikeability and the induced demand for cycling[J]. Proceedings of the National Academy of Sciences, 2023, 120(16): e2220515120. doi: 10.1073/pnas.2220515120
    [169]
    GREEN O, IVAN J N, FILIPOVSKA M, et al. Using logistic regression to evaluate pedestrian-vehicle interaction severity at side street green and exclusive phase signals[J]. Transportation Research Record, 2023, 2677(9): 438-449. doi: 10.1177/03611981231159120
    [170]
    BIAN Y, LI L, ZHANG H, et al. Categorizing bicycling environment quality based on mobile sensor data and bicycle flow data[J]. Sustainability, 2021, 13(8): 4085. doi: 10.3390/su13084085
    [171]
    BAI Y W, BAI Y H, WANG R Y, et al. Exploring associations between the built environment and cycling behaviour around urban greenways from a human-scale perspective[J]. Land, 2023, 12(3): 619. doi: 10.3390/land12030619
  • 加载中

Catalog

    Article Metrics

    Article views (917) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return