Citation: | ZHUANG Yan, DONG Chun-jiao, LI Peng-hui, ZHENG Rui. Spatiotemporal characteristics and severity modelling of electric vehicle-pedestrian collision accidents[J]. Journal of Traffic and Transportation Engineering, 2024, 24(6): 299-310. doi: 10.19818/j.cnki.1671-1637.2024.06.021 |
[1] |
SANGUESA J A, TORRES-SANZ V, GARRIDO P, et al. A review on electric vehicles: technologies and challenges[J]. Smart Cities, 2021, 4(1): 372-404. doi: 10.3390/smartcities4010022
|
[2] |
National Highway Traffic Safety Administration. Fatality analysis reporting system[R]. Washington DC: National Highway Traffic Safety Administration, 2018.
|
[3] |
TATARIS K. Incidence rates of pedestrian and bicyclist crashes by hybrid electric passenger vehicles: an update[J]. Annals of Emergency Medicine, 2014, 64(2): 195-196. doi: 10.1016/j.annemergmed.2014.05.017
|
[4] |
WU Jing-shu. Updated analysis of pedestrian and pedalcyclist crashes with hybrid vehicles[R]. Washington DC: National Highway Traffic Safety Administration, 2017.
|
[5] |
姜良维, 张树林, 金会庆. 我国新能源汽车交通事故特征及其管控对策[J]. 人类工效学, 2021, 27(6): 59-62.
JIANG Liang-wei, ZHANG Shu-lin, JIN Hui-qing. Characteristics and control countermeasures of new energy vehicle traffic accidents in China[J]. Chinese Journal of Ergonomics, 2021, 27(6): 59-62. (in Chinese)
|
[6] |
梁新苗, 肖凌云, 王澎, 等. 数据挖掘与现场调查结合的电动汽车事故分析[J]. 中国安全科学学报, 2022, 32(1): 180-187.
LIANG Xin-miao, XIAO Ling-yun, WANG Peng, et al. Analysis on electric vehicle accidents based on data mining and site investigation[J]. China Safety Science Journal, 2022, 32(1): 180-187. (in Chinese)
|
[7] |
DAI D J, JAWORSKI D. Influence of built environment on pedestrian crashes: a network-based GIS analysis[J]. Applied Geography, 2016, 73: 53-61. doi: 10.1016/j.apgeog.2016.06.005
|
[8] |
YAO Shen-jun, WANG Jin-zi, FANG Lei, et al. Identification of vehicle-pedestrian collision hotspots at the micro-level using network kernel density estimation and random forests: a case study in Shanghai, China[J]. Sustainability, 2018, 10(12): 4762. doi: 10.3390/su10124762
|
[9] |
FAMILI A, SARASUA W A, OGLE J H, et al. GIS based spatial analysis of pedestrian crashes: a case study of South Carolina[C]//ASCE. International Conference on Transportation and Development. Reston: ASCE, 2018: 368-376.
|
[10] |
TORAN POUR A, MORIDPOUR S, TAY R, et al. Influence of pedestrian age and gender on spatial and temporal distribution of pedestrian crashes[J]. Traffic Injury Prevention, 2018, 19(1): 81-87. doi: 10.1080/15389588.2017.1341630
|
[11] |
MA Qing-lu, HUANG Guang-hao, TANG Xiao-yao. GIS-based analysis of spatial-temporal correlations of urban traffic accidents[J]. European Transport Research Review, 2021, 13(1): 1-11. doi: 10.1186/s12544-020-00457-z
|
[12] |
NASRI M, AGHABAYK K, ESMAILI A, et al. Using ordered and unordered logistic regressions to investigate risk factors associated with pedestrian crash injury severity in Victoria, Australia[J]. Journal of Safety Research, 2022, 81: 78-90. doi: 10.1016/j.jsr.2022.01.008
|
[13] |
KONG Chun-yu, YANG Ji-kuang. Logistic regression analysis of pedestrian casualty risk in passenger vehicle collisions in China[J]. Accident Analysisand Prevention, 2010, 42(4): 987-993. doi: 10.1016/j.aap.2009.11.006
|
[14] |
OLSZEWSKI P, SZAGAŁA P, WOLA AN'G SKI M, et al. Pedestrian fatality risk in accidents at unsignalized zebra crosswalks in Poland[J]. Accident Analysis and Prevention, 2015, 84: 83-91. doi: 10.1016/j.aap.2015.08.008
|
[15] |
HUSSAIN Q, FENG H Q, GRZEBIETA R, et al. The relationship between impact speed and the probability of pedestrian fatality during a vehicle-pedestrian crash: a systematic review and meta-analysis[J]. Accident Analysis and Prevention, 2019, 129: 241-249. doi: 10.1016/j.aap.2019.05.033
|
[16] |
ZENG Qiang, GU Wei-hua, ZHANG Xuan, et al. Analyzing freeway crash severity using a Bayesian spatial generalized ordered logit model with conditional autoregressive priors[J]. Accident Analysisand Prevention, 2019, 127: 87-95. doi: 10.1016/j.aap.2019.02.029
|
[17] |
HOU Qin-zhong, HUO Xiao-yan, LENG Jun-qiang, et al. Examination of driver injury severity in freeway single-vehicle crashes using a mixed logit model with heterogeneity-in-means[J]. Physica A: Statistical Mechanics and Its Applications, 2019, 531: 121760. doi: 10.1016/j.physa.2019.121760
|
[18] |
宋栋栋, 杨小宝, 祖兴水, 等. 基于均值异质性随机参数Logit模型的城市道路事故驾驶员受伤严重程度研究[J]. 交通运输系统工程与信息, 2021, 21(3): 214-220.
SONG Dong-dong, YANG Xiao-bao, ZU Xing-shui, et al. Examination of driver injury severity in urban crashes: a random parameters logit model with heterogeneity in means approach[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(3): 214-220. (in Chinese)
|
[19] |
LI Y X, ABDEL-ATY M, YUAN J H, et al. Analyzing traffic violation behavior at urban intersections: a spatio-temporal kernel density estimation approach using automated enforcement system data[J]. Accident Analysis and Prevention, 2020, 141: 105509. doi: 10.1016/j.aap.2020.105509
|
[20] |
KATICHA S W, FLINTSCH G W. A kernel density empirical Bayes (KDEB) approach to estimate accident risk[J]. Accident Analysisand Prevention, 2023, 186: 107039. doi: 10.1016/j.aap.2023.107039
|
[21] |
BRUNSDON C, CORCORAN J, HIGGS G. Visualising space and time in crime patterns: a comparison of methods[J]. Computers, Environment and Urban Systems, 2007, 31(1): 52-75. doi: 10.1016/j.compenvurbsys.2005.07.009
|
[22] |
ROMANO B, JIANG Z. Visualizing traffic accident hotspots based on spatial-temporal network kernel density estimation[C]//ACM. Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York: ACM, 2017: 7-10.
|
[23] |
PAL C, HIRAYAMA S, NARAHARI S, et al. An insight of World Health Organization (WHO) accident database by cluster analysis with self-organizing map (SOM)[J]. Traffic Injury Prevention, 2018, 19(S1): S15-S20. http://smartsearch.nstl.gov.cn/paper_detail.html?id=1b1ff5c1ceaf0aaef2bcfb3e0c57f495
|
[24] |
刘强, 严修, 谢谦, 等. 基于事故综合强度的公交事故严重程度分析[J]. 交通运输系统工程与信息, 2022, 22(6): 152-159.
LIU Qiang, YAN Xiu, XIE Qian, et al. Bus accident severity analysis based on comprehensive accident intensity[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(6): 152-159. (in Chinese)
|
[25] |
SUN Zhi-yuan, WANG Duo, GU Xin, et al. A hybrid approach of random forest and random parameters logit model of injury severity modeling of vulnerable road users involved crashes[J]. Accident Analysis and Prevention, 2023, 192: 107235. doi: 10.1016/j.aap.2023.107235
|
[26] |
SE C, CHAMPAHOM T, JOMNONKWAO S, et al. The impact of weekday, weekend, and holiday crashes on motorcyclist injury severities: accounting for temporal influence with unobserved effect and insights from out-of-sample prediction[J]. Analytic Methods in Accident Research, 2022, 36: 100240. doi: 10.1016/j.amar.2022.100240
|
[27] |
MECHANTE L F S, DE ARGILA LORENTE C M, LOPEZ-VALDES F. A pilot analysis of crash severity of electric passenger cars in Spain (2016-2020)[J]. Traffic Injury Prevention, 2022, 23(S1): S217-S219. doi: 10.1080/15389588.2022.2125230
|
[28] |
HARIRFOROUSH H, BELLALITE L. A new integrated GIS-based analysis to detect hotspots: a case study of the city of Sherbrooke[J]. Accident Analysisand Prevention, 2019, 130: 62-74. doi: 10.1016/j.aap.2016.08.015
|
[29] |
BÍL M, ANDRÁŠIK R, SEDONÍK J. A detailed spatiotemporal analysis of traffic crash hotspots[J]. Applied Geography, 2019, 107: 82-90. doi: 10.1016/j.apgeog.2019.04.008
|
[30] |
周备, 孙晴, 张生瑞. 考虑时间不稳定性的货车事故严重程度分析[J]. 中国安全科学学报, 2022, 32(11): 160-167.
ZHOU Bei, SUN Qing, ZHANG Sheng-rui. Severity analysis of freight car accidents considering time instability[J]. China Safety Science Journal, 2022, 32(11): 160-167. (in Chinese)
|