Citation: | OU Kai, HU Hao-wen, WU Yu-heng, GUO Xuan, YANG Xin-rong, ZHANG Qian, MA Ming-hui, WANG Ya-xiong. Review on technologies of fuel cell air compressors for vehicles[J]. Journal of Traffic and Transportation Engineering, 2025, 25(1): 66-93. doi: 10.19818/j.cnki.1671-1637.2025.01.005 |
[1] |
WANG Ya-xiong, ZHONG Shun-bin, SUN Feng-chun. Research progress in vehicular high mass density solid hydrogen storage materials[J]. Chinese Journal of Rare Metals, 2022, 46(6): 796-812.
|
[2] |
SPARANO M, SORRENTINO M, TROIANO G T, et al. The future technological potential of hydrogen fuel cell systems for aviation and preliminary co-design of a hybrid regional aircraft powertrain through a mathematical tool[J]. Energy Conversion and Management, 2023, 281: 116822. doi: 10.1016/j.enconman.2023.116822
|
[3] |
HU Hao-wen, OU Kai, YUAN Wei-wei. Fused multi-model predictive control with adaptive compensation for proton exchange membrane fuel cell air supply system[J]. Energy, 2023, 284: 128459.
|
[4] |
WANG Ya-xiong, WANG Ke-ke, ZHONG Shun-bin, et al. Research progress on durability enhancement-oriented electric control technology of automotive fuel cell system[J]. Automotive Engineering, 2022, 44(4): 545-559.
|
[5] |
HUANG Wei-feng, NIU Tong, ZHANG Cai-zhi, et al. Experimental study of the performance degradation of proton exchange membrane fuel cell based on a multi-module stack under selected load profiles by clustering algorithm[J]. Energy, 2023, 270: 126937.
|
[6] |
DI ILIO G, DI GIORGIO P, TRIBIOLI L, et al. Preliminary design of a fuel cell/battery hybrid powertrain for a heavy-duty yard truck for port logistics[J]. Energy Conversion and Management, 2021, 243: 114423.
|
[7] |
XUN Qian, MURGOVSKI N, LIU Yu-jing. Chance-constrained robust co-design optimization for fuel cell hybrid electric trucks[J]. Applied Energy, 2022, 320: 119252. doi: 10.1016/j.apenergy.2022.119252
|
[8] |
JIA Chun-chun, HE Hong-wen, ZHOU Jia-ming, et al. A novel health-aware deep reinforcement learning energy management for fuel cell bus incorporating offline high-quality experience[J]. Energy, 2023, 282: 128928. doi: 10.1016/j.energy.2023.128928
|
[9] |
WANG Ya-xiong, YU Qing-gang, WANG Xue-chao, et al. Adaptive optimal energy management strategy of fuel cell vehicle by considering fuel cell performance degradation[J]. Journal of Traffic and Transportation Engineering, 2022, 22(1): 190-204. doi: 10.19818/j.cnki.1671-1637.2022.01.016
|
[10] |
SARMA U, GANGULY S. Determination of the component sizing for the PEM fuel cell-battery hybrid energy system for locomotive application using particle swarm optimization[J]. Journal of Energy Storage, 2018, 19: 247-59.
|
[11] |
XU Xiao-jian, YANG Rui, JI Yong-bo, et al. Review on key technologies of hydrogen fuel cell powered vessels[J]. Journal of Traffic and Transportation Engineering, 2022, 22(4): 47-67. doi: 10.19818/j.cnki.1671-1637.2022.04.004
|
[12] |
CHEN Xu-ran, GUO Yi. Optimization of energy management for fuel cell-lithium battery hybrid ship[J]. Ship Science and Technology, 2023, 45(7): 106-110. doi: 10.3404/j.issn.1672-7649.2023.07.021
|
[13] |
ZHANG Chun-lei, LI He, DONG Mao-lin, et al. Adaptive neural network sliding mode control for the fuel cell air supply system[J]. Journal of Northeastern University (Natural Science), 2022, 43(9): 1270-1276.
|
[14] |
WANG Yun-long, WANG Yong-fu, XU Jian-feng, et al. Observer-based discrete adaptive neural network control for automotive PEMFC air-feed subsystem[J]. IEEE Transactions on Vehicular Technology, 2021, 70(4): 3149-3163.
|
[15] |
CHEN Jian, LIU Zhi-yang, WANG Fan, et al. Optimal oxygen excess ratio control for PEM fuel cells[J]. IEEE Transactions on Control Systems Technology, 2018, 26: 1711-1721.
|
[16] |
DENG Hui-wen, LI Qi, CUI You-long, et al. Nonlinear controller design based on cascade adaptive sliding mode control for PEM fuel cell air supply systems[J]. International Journal of Hydrogen Energy, 2019, 44(35): 19357-19369.
|
[17] |
CHEN Jin-zhou, LI Jian-wei, XU Zhe-zhuang, et al. Anti-disturbance control of oxygen feeding for vehicular fuel cell driven by feedback linearization model predictive control-based cascade scheme[J]. International Journal of Hydrogen Energy, 2020, 45(58): 33925-33938.
|
[18] |
LI Ying-long, CHEN Hui-cui, ZHANG Tong, et al. Research on control strategies for vehicle fuel cell systems[J]. Chinese Journal of Automotive Engineering, 2024, 14(4): 566-585.
|
[19] |
CHEN Hong, JIANG Kun, TANG Ting-jiang, et al. Research on membrane electrode assembly consistency of high-power proton exchange membrane fuel cell stack[J]. CIESC Journal, 2024, 75(2): 1-12.
|
[20] |
ZHAO Dong-dong, ZHENG Qing, GAO Fei, et al. Disturbance decoupling control of an ultra-high speed centrifugal compressor for the air management of fuel cell systems[J]. International Journal of Hydrogen Energy, 2014, 39(4): 1788-1798. doi: 10.1016/j.ijhydene.2013.11.057
|
[21] |
LIU Zhi-xiang, LI Lun, DING Yi, et al. The surge research of heavy PEMFC air system with a centrifugal compressor[J]. Acta Energiae Solaris Sinica, 2018, 39(1): 233-239.
|
[22] |
LIU Zhao-ming, CHANG Guo-feng, JIANG Shang-feng, et al. Adaptive anti-surge control strategy for PEM fuel cell vehicle with online surge detection[J]. IEEE Transactions on Transportation Electrification, 2023: 10(1): 844-858.
|
[23] |
SU Qing-qing, ZHOU Jia-ming, YI Feng-yan, et al. An intelligent control method for PEMFC air supply subsystem to optimize dynamic response performance[J]. Fuel, 2024, 361: 130697. doi: 10.1016/j.fuel.2023.130697
|
[24] |
LI Yue-hua, PEI Pu-cheng, MA Ze, et al. Analysis of air compression, progress of compressor and control for optimal energy efficiency in proton exchange membrane fuel cell[J]. Renewable and Sustainable Energy Reviews, 2020, 133: 110304. doi: 10.1016/j.rser.2020.110304
|
[25] |
YAN Hui-hui, LI Hao-yu, ZHOU Bo-hao, et al. Research and optimization of the mechanism of centrifugal compressor[J]. Journal of Tsinghua University (Science and Technology), 2023, 63(10): 1672-1685.
|
[26] |
ZHAO Hui-jing, XI Guang, DUAN Ya-fei, et al. Experimental study of tip clearance effects on performance and flow field of a centrifugal compressor[J]. Journal of Engineering Thermophysics, 2018, 39(7): 1453-1460.
|
[27] |
HONG S, MUGABI J, JEONG J H. Numerical study on vortical flow structure and performance enhancement of centrifugal compressor impeller[J]. Applied Sciences, 2022, 12(15): 7755. doi: 10.3390/app12157755
|
[28] |
ZHAO Huan-xin, TAN Lei, YANG Dang-guo, et al. Optimization design and pressure fluctuation suppression based on orthogonal method for a centrifugal compressor[J]. Machines, 2023, 11(5): 559.
|
[29] |
WAN Yu, GUAN Jin-ping, XU Shi-chuan. Improved empirical parameters design method for centrifugal compressor in PEM fuel cell vehicle application[J]. International Journal of Hydrogen Energy, 2016, 42(8): 5590-5605.
|
[30] |
CHEN Zhi-kai, HUANG Hai-yang, CHEN Qin-long, et al. Novel multidisciplinary design and multi-objective optimization of centrifugal compressor used for hydrogen fuel cells[J]. International Journal of Hydrogen Energy, 2023, 48(33): 12444-12460.
|
[31] |
KANG Da, HE Wei-dong, XU Yi. Effects of splitter blade length and circumferential position on performance of high pressure ratio centrifugal compressor[J]. Journal of Propulsion Technology, 2020, 41(12): 2709-2719.
|
[32] |
XU C, AMANO R S. Centrifugal compressor performance improvements through impeller splitter location[J]. Journal of Energy Resources Technology, 2018, 140(5): 051201.
|
[33] |
LI Yu-jin, XIONG Wan-li, PENG Si-jin, et al. Effect of vaned diffuser angle of attack on aerodynamic performance of hydrogen fuel cell air compressor[J]. Chinese Journal of Turbomachinery, 2022, 64(2): 1-8.
|
[34] |
LUO Wei. Effects of changes in key structural parameters on the aerodynamic performance of a compressor model[J]. Chemical Engineering and Equipment, 2023(7): 184-187.
|
[35] |
LI Xiao-yu, WANG Chen-fang, WANG Zhi-xin, et al. Effect of volute passage area on the performance of centrifugal compressor[J]. Journal of Hefei University of Technology (Natural Science), 2021, 44(5): 590-594, 620. doi: 10.3969/j.issn.1003-5060.2021.05.003
|
[36] |
YANG Guo-mang, HU Yu-sheng, CHEN Bin, et al. The optimization of air compressor volute for vehicle[J]. Chinese Journal of Turbomachinery, 2021, 63(4): 14-21.
|
[37] |
HOU Liu-kai, HAO Kai-yuan. Analysis on static characteristics of bump thrust foil bearings[J]. Bearing, 2022 (10): 56-61.
|
[38] |
XU Fang-cheng, ZHANG Guang-hui, SUN Yi, et al. Performance analysis of air foil thrust bearings with different top foil taper heights[J]. Journal of Aerospace Power, 2016, 31(12): 3064-3072.
|
[39] |
XU Run, MA Xi-zhi. Analysis of the static performance of bump foil journal bearing based on elastic shell model[J]. Lubrication Engineering, 2010, 35(1): 17-21. doi: 10.3969/j.issn.0254-0150.2010.01.005
|
[40] |
ZANG Teng-fei, JIA Chen-hui, ZHANG Lu-yao, et al. Structural optimization and reliability analysis of hybrid dynamic pressure gas bearings[J]. Journal of Aerospace Power, 2021, 36(12): 2606-2620.
|
[41] |
WAN Yu, XU Si-chuan, ZHANG Liang. Multi-operating condition optimal design of centrifugal impeller for fuel cell vehicle application based on parameterization of impeller profile[J]. Journal of Tongji University (Natural Science), 2017, 45(1): 98-108.
|
[42] |
WANG Zhong-yi, LI Jia-peng, WANG Yan-hua, et al. Aerodynamic performance prediction and optimization design of single stage centrifugal compressor[J]. Journal of Engineering for Thermal Energy and Power, 2021, 36(10): 119-125.
|
[43] |
PENG Sen, YANG Ce, MA Chao-chen, et al. Influence of front lean angle on centrifugal compressor performance[J]. Journal of Tsinghua University (Science and Technology), 2005, 45(2): 250-253. doi: 10.3321/j.issn:1000-0054.2005.02.029
|
[44] |
WEI Yi-yang, LI Bing-lin, XU Xiao-mei, et al. Design of electric supercharger compressor and its performance optimization[J]. Processes, 2023, 11(7): 2132.
|
[45] |
SHAO Gao-peng, ZHANG Yang-jun. Optimization design of a fuel cell air compressor based on a flow field deviation analysis[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(6): 490-496.
|
[46] |
ZHANG Yue-meng, XU Si-chuan, WAN Yu. Performance improvement of centrifugal compressors for fuel cell vehicles using the aerodynamic optimization and data mining methods[J]. International Journal of Hydrogen Energy, 2020, 45(19): 11276-11286. doi: 10.1016/j.ijhydene.2020.02.026
|
[47] |
TANG Xin-zi, XIAO Peng, CAI Peng, et al. Multi-objective optimization design of small-centrifugal compressor under variable flow conditions[J]. China Mechanical Engineering, 2018, 29(16): 1975-1983. doi: 10.3969/j.issn.1004-132X.2018.16.013
|
[48] |
XIAO Jun, WANG Yi-da, LIU Xiao-min, et al. Multi-condition aerodynamic optimization of the air compressor impeller used in fuel-cell vehicles[J]. Journal of Xi'an Jiaotong University, 2021, 55(9): 39-48.
|
[49] |
CHEN Hao-xiang, ZHUGE Wei-lin, ZHANG Yang-jun, et al. Performance improvement of a centrifugal compressor for the fuel cell vehicle by tip leakage vortex control[J]. Journal of Thermal Science, 2021, 30: 2099-2111. doi: 10.1007/s11630-021-1430-7
|
[50] |
CHEN Xue-fei, AI Zi-jian, JI Yun-feng, et al. Numerical investigation of a centrifugal compressor with a single circumferential groove in different types of diffusers[C]//ASME. Turbine Technical Conference and Exposition, GT 2017. New York: ASME, 2017: 11-19.
|
[51] |
BURGMANN S, FISCHER T, RUDERSDORF M, et al. Development of a centrifugal fan with increased part-load efficiency for fuel cell applications[J]. Renewable Energy, 2018, 116: 815-826. doi: 10.1016/j.renene.2017.09.075
|
[52] |
ZHANG Guo-lu-tiao, WANG Jiang-feng, LOU Ju-wei, et al. Numerical study on the impact of half-vaned diffuser on flow performance of centrifugal compressor[J]. Journal of Xi'an Jiaotong University, 2023, 57(10): 89-98. doi: 10.7652/xjtuxb202310009
|
[53] |
LIU Chang-Sheng, SUN Yang. Numerical Analysis of centrifugal compressor expansion stability improvement[J]. Chinese Journal of Turbomachinery, 2023, 65(S1): 8-15.
|
[54] |
FU Jian-qin, WANG Huai-lin, BAO Huan-huan, et al. Multi-parameter optimization for the performance of the fuel cell air compressor based on computational fluid dynamics analysis at part load[J]. Thermal Science and Engineering Progress, 2023, 44: 102057. doi: 10.1016/j.tsep.2023.102057
|
[55] |
WU Ya-dong, CAO An-guo, LIU Peng-yin, et al. Application of Pareto multi-objective algorithm in centrifugal compressor volute optimization[J]. Journal of Aerospace Power, 2016, 31(1): 92-99.
|
[56] |
CAO An-guo, WU Ya-dong, LIU Peng-yan, et al. Application of adaptive sequential optimization algorithm based on Kriging surrogate model in design of centrifugal compressor volute[J]. Journal of Chinese Society of Power Engineering, 2015, 35(7): 562-567. doi: 10.3969/j.issn.1674-7607.2015.07.008
|
[57] |
GAO Qi-hong, SUN Wen-jing, ZHANG Jing-zhou. Optimal design of top-foil wedge shape for a specific multi-layer gas foil thrust bearing by considering aerodynamic and thermal performances[J]. Thermal Science and Engineering Progress, 2023, 44: 102060. doi: 10.1016/j.tsep.2023.102060
|
[58] |
CHEN Rui, ZHAO Yong, YAO Jia-kang, et al. Research on the performance of foil thrust bearings under dynamic disturbances[J]. Tribology International, 2022, 174: 107744. doi: 10.1016/j.triboint.2022.107744
|
[59] |
LUAN Wen-lin, LIU Yan, WANG Yong-liang, et al. Effect of herringbone groove structure parameters on the static performance of gas foil herringbone groove thrust bearings[J]. Tribology International, 2023, 177: 107979. doi: 10.1016/j.triboint.2022.107979
|
[60] |
LATRAY N, KIM D. Novel thrust foil bearing with pocket grooves for enhanced static performance[J]. Journal of Tribology, 2021, 143(11): 1-20.
|
[61] |
SHI Ting, XIONG Wei, PENG Xue-yuan, et al. Experimental investigation on the start-stop performance of gas foil bearings-rotor system in the centrifugal air compressor for hydrogen fuel cell vehicles[J]. International Journal of Hydrogen Energy, 2023, 48(88): 34501-34519.
|
[62] |
SHI Ting, WANG Huai-yu, YANG Wen-ming, et al. Mathematical modelling and optimization of gas foil bearings-rotor system in hydrogen fuel cell vehicles[J]. Energy, 2024, 290: 130129. doi: 10.1016/j.energy.2023.130129
|
[63] |
XU Zhen-ni, LI Chang-lin, DU Jian-jun. Modeling and static characteristics study of the double-layer bump gas foil bearing[J]. Tribology International, 2021, 164: 107202. doi: 10.1016/j.triboint.2021.107202
|
[64] |
YAN Jia-jia, LIU Zhan-sheng, ZHANG Guang-hui, et al. Performance of a novel foil bearing with top foil thickness variation in axial direction[J]. Journal of Harbin Institute of Technology, 2018, 50(1): 59-67.
|
[65] |
ZHANG Zhi-ming, PAN Jia-qi, ZHANG Tong. Analysis of key influencing factors on rotor critical speed of centrifugal air compressor for fuel cell vehicles[J]. Automotive Engineering, 2022, 44(9): 1386-1393.
|
[66] |
WU Lei, YU Shen-bo, YU Yan-ming, et al. Dynamic analysis of electromechanical coupling rotor of permanent magnet synchronous motorized spindle[J]. Modular Machine Tool and Automatic Manufacturing Technique, 2021(11): 10-14.
|
[67] |
TIAN Ye, SUN Yan-hua, YANG Li-hua, et al. Study on critical speed of high speed motor with different supports and rotor assembly[J]. Journal of Vibration and Shock, 2013, 32(8): 24-30. doi: 10.3969/j.issn.1000-3835.2013.08.005
|
[68] |
CUI Gang, XIONG Bin, HUANG Kang-jie, et al. Study on spatial distribution characteristics and influencing factors of demagnetization of permanent magnet motor for electric vehicle[J]. Transactions of China Electrotechnical Society, 2023, 38(22): 5959-5974.
|
[69] |
JIA Mei-xia, HU Jian-jun, XIAO Feng, et al. Modeling and analysis of electromagnetic field and temperature field of permanent-magnet synchronous motor for automobiles[J]. Electronics, 2021, 10(17): 2173. doi: 10.3390/electronics10172173
|
[70] |
DING Fang, WANG Ai-guo, ZHANG Qian-bin. Analysis of unidirectional and bidirectional magnetic-thermal coupling of permanent magnet synchronous motor[J]. Journal of Vibroengineering, 2022, 24(8): 1541-1555. doi: 10.21595/jve.2022.22572
|
[71] |
SHI Quan, DONG Yue, LI Bang-long, et al. Analysis of electromagnetic vibration and noise of permanent magnet synchronous motor based on field-circuit coupling[J]. Journal of Vibroengineering, 2022, 24(6): 1188-1199.
|
[72] |
LIN Ju-guang, LAI Jian-bin, LU Ling. Thermal-structural coupled analysis of rotor of vehicle permanent magnet synchronous motor[J]. Journal of Hefei University of Technology (Natural Science), 2019, 42(2): 172-177, 210. doi: 10.3969/j.issn.1003-5060.2019.02.006
|
[73] |
ZHANG Qian, FENG Ming, CHEN Jun, et al. A vehicle mounted super high speed permanent magnet brushless motor drive[J]. Chinese Journal of Engineering, 2017, 39(10): 1565-1574.
|
[74] |
ANTIVACHIS M, DIETZ F, ZWYSSIG C, et al. Novel high-speed turbo compressor with integrated inverter for fuel cell air supply[J]. Frontiers in Mechanical Engineering, 2021, 6: 612301.
|
[75] |
KIM J, JEONG I, NAM K, et al. Sensorless control of PMSM in a high-speed region considering iron loss[J]. IEEE Transactions on Industrial Electronics, 2015, 62(10): 6151-6159.
|
[76] |
LI Chun-peng, BEN Hong-qi, LIU Bo, et al. Deviation decouple control method based on disturbance observer[J]. Proceedings of the CSEE, 2015, 35(22): 5859-5868.
|
[77] |
WU Wei, DING Xin-zhong, YAN Cai-zhong. Research on control method of current loop decoupling based on complex vector[J]. Proceedings of the CSEE, 2017, 37(14): 4184-4191.
|
[78] |
SUN Jian-ye, WANG Zhi-qiang, GU Xin, et al. Predictive current control of PMSM with high speed and low-frequency-ratio[J]. Proceedings of the CSEE, 2020, 40(11): 3663-3672.
|
[79] |
LU Ming-hui, WANG Xiong-fei, LOH P C, et al. Graphical evaluation of time-delay compensation techniques for digitally-controlled converters[J]. IEEE Transactions on Power Electronics, 2017, 33(3): 2601-2614.
|
[80] |
ZHU Jun, HAN Li-li, WANG Xu-dong. Status and trends of sensorless control algorithm for PMSM[J]. Micromotors, 2013, 46(9): 11-16.
|
[81] |
WANG Zi-hui, LU Kai-yuan, BLAABJERG F. A simple startup strategy based on current regulation for back-EMF based sensorless control of PMSM[J]. IEEE Transactions on Power Electronics, 2012, 27(8): 3817-3825.
|
[82] |
BAO Xu-cong, WANG Xiao-lin, PENG Xu-heng, et al. Review of key technologies of high-speed motor drive[J]. Proceedings of the CSEE, 2022, 42(18): 6856-6870.
|
[83] |
ZHANG Zhi-wen, ZOU Bo-wen, REN Yue. PMSM rotor position estimation strategy based on improved SOGI[J]. Modular Machine Tool and Automatic Manufacturing Technique, 2023(6): 173-175, 187.
|
[84] |
ZHANG Qian, ZHANG Hong-jie, MAO Shuai, et al. A high-speed air compressor controller for vehicle used fuel cell system[C]//IEEE. 2021 IEEE Vehicle Power and Propulsion Conference. New York: IEEE, 2021: 1-4.
|
[85] |
WU Shi, YANG Lin, LIU Xian-li, et al. Study on performance of integral impeller stiffness based on five-axis machining system[J]. Procedia CIRP, 2016, 56: 485-490.
|
[86] |
HEIGEL J C, TESSIER J, TAPPARO J, et al. Physics-based design for an impeller machining process[J]. Manufacturing Letters, 2022, 33: 502-507.
|
[87] |
ZIMMERMANN N, MVLLER E, LANG S, et al. Thermally compensated 5-axis machine tools evaluated with impeller machining tests[J]. CIRP Journal of Manufacturing Science and Technology, 2023, 46: 19-35.
|
[88] |
WEI Guo-jia. Research on electrical discharge machining technology applied in small integrally shrouded impeller[J]. Aeronautical Manufacturing Technology, 2015(7): 86-90.
|
[89] |
QU An-bang, LI Fan-chun. Influence of 3D printing on compressor impeller fatigue crack propagation life[J]. International Journal of Mechanical Sciences, 2023, 245: 108107.
|
[90] |
QU An-bang, LI Fan-chun. Effect of double crack on fatigue crack growth life of 3D printing compressor impeller[J]. Thin-Walled Structures, 2023, 189: 110883.
|
[91] |
XIONG Wan-li, WANG Jian, CHEN Zhen-yu, et al. Review of research status and development of foil air bearings[J]. Journal of Mechanical Engineering, 2022, 58(21): 92-113.
|
[92] |
ZENG Qun-feng, CAO Jiang-nan. Latest progress of solid lubrication coatings for fabrication of gas-foil bearings[J]. Chinese Journal of Vacuum Science and Technology, 2019, 39(8): 694-704.
|
[93] |
LIU Jia-qi, BI chun-xiao, HAN Dong-jiang, et al. Research progress of elastic foil bearings[J]. Lubrication Engineering, 2022, 47(9): 166-178.
|
[94] |
HUO Bo-bo, MA Xi-zhi. Research on the preparation and performances of WC-12Co coatings for gas bump foil bearings[J]. Lubrication Engineering, 2018, 43(4): 26-33.
|
[95] |
DU Kai-qi, MA Xi-zhi. Research on the preparation and performances of MoS2-based lubricating coatings for gas bump foil bearings[J]. Lubrication Engineering, 2019, 44(5): 22-28.
|
[96] |
WEI Kai-jun, ZUO Shu-guang, WU Xu-dong, et al. Measurement and analysis for whoosh noise of a centrifugal compressor in a fuel cell vehicle[J]. Journal of Vibration and Shock, 2017, 36(7): 14-20.
|
[97] |
HUA Wen-can, YANG Shan-ju, WANG Qi, et al. Experimental study on bump-foil gas bearing used in centrifugal air compressor[J]. Lubrication Engineering, 2023, http://kns.cnki.net/kcms/detail/44.1260.TH.20231013.1711.002.html. http://kns.cnki.net/kcms/detail/44.1260.TH.20231013.1711.002.html
|
[98] |
WU Yue, BAO Huan-huan, FU Jian-qi, et al. Review of recent developments in fuel cell centrifugal air compressor: comprehensive performance and testing techniques[J]. International Journal of Hydrogen Energy, 2023, 48(82): 32039-32055.
|
[99] |
BAO Huan-huan, FU Jian-qin, ZHANG Lei, et al. Experimental study on performance attenuation characteristics of centrifugal air compressor for fuel cells[J]. Journal of Hunan University: Natural Sciences, 2023, 50(2): 191-197.
|