Volume 25 Issue 6
Dec.  2025
Turn off MathJax
Article Contents
YANG Wei, FANG Hong-su, TANG Xiang-song, GAO Wei-yong, ZHOU Yong-jun. Lightweight YOLOv8-ALTE algorithm for bridge crack disease detection[J]. Journal of Traffic and Transportation Engineering, 2025, 25(6): 75-89. doi: 10.19818/j.cnki.1671-1637.2025.06.007
Citation: YANG Wei, FANG Hong-su, TANG Xiang-song, GAO Wei-yong, ZHOU Yong-jun. Lightweight YOLOv8-ALTE algorithm for bridge crack disease detection[J]. Journal of Traffic and Transportation Engineering, 2025, 25(6): 75-89. doi: 10.19818/j.cnki.1671-1637.2025.06.007

Lightweight YOLOv8-ALTE algorithm for bridge crack disease detection

doi: 10.19818/j.cnki.1671-1637.2025.06.007
Funds:

National Key R&D Program of China 2021YFB2601000

Scientist+Engineer Team Construction Program of Shaanxi Qinchuangyuan 2022KXJ-021

More Information
  • Corresponding author: ZHOU Yong-jun (1978-), male, professor, PhD, zyj@chd.edu.cn
  • Received Date: 2023-12-05
  • Accepted Date: 2024-11-18
  • Rev Recd Date: 2024-04-03
  • Publish Date: 2025-12-28
  • To address low efficiency, poor detection accuracy, and high missed detection rates in bridge crack detection under complex conditions, a lightweight algorithm named YOLOv8-ALTE based on an improved YOLOv8 was proposed. On the basis of the YOLOv8-N model, its C2f module was integrated with a lightweight convolutional module, ALConv, capable of perceiving multi-scale feature information, to enrich crack-related information in the extracted feature maps. A triplet attention was embedded into the shallow layers of the network's feature extraction module to enhance the model's accuracy of locating and identifying bridge cracks. A lightweight decoupled head, designed with parameter-sharing, replaced the original decoupled head, effectively reducing the computational complexity of the model. Additionally, a multi-parameter distance intersection over union loss was introduced to replace the original regression loss, enabling higher efficiency and accuracy in bounding box regression. A bridge crack detection dataset with various complex background conditions was constructed through manual annotation. Multiple data augmentation techniques were employed to organize and expand the dataset. Precision, recall, average precision (AP50 and AP50-95), and floating point operations (FLOPs) were adopted as quantitative evaluation metrics. The model was evaluated through comparison, module integration, attention mechanism incorporation, and ablation experiments. Experimental results demonstrate that YOLOv8-ALTE achieves a precision of 93.9%, a recall of 83.5%, an AP50 of 89.0%, an AP50-95 of 73.8%, and a FLOPs of 8.0. The comprehensive performance of YOLOv8-ALTE outperforms the original YOLOv8-N and other compared models, proving the superiority of the proposed algorithm. YOLOv8-ALTE enables efficient and accurate detection of bridge cracks while improving computational efficiency.

     

  • loading
  • [1]
    Editorial Department of China Journal of Highway and Transport. Review on China's bridge engineering research: 2021[J]. China Journal of Highway and Transport, 2021, 34(2): 1-97.
    [2]
    CHEN Lei-lei, ZHAO Xin-yuan, QIAN Zhen-dong, et al. A systematic review of steel bridge deck pavement in China[J]. Journal of Road Engineering, 2023, 3(1): 1-15. doi: 10.1016/j.jreng.2023.01.003
    [3]
    ZHANG A A, SHANG J, LI B, et al. Intelligent pavement condition survey: Overview of current researches and practices[J]. Journal of Road Engineering, 2024, 4(3): 257-281. doi: 10.1016/j.jreng.2024.04.003
    [4]
    CHU Hong-hu, YUAN Hua-qing, LONG Li-zhi, et al. High-resolution bridge crack image cascade segmentation method based on Transformer[J]. China Journal of Highway and Transport, 2024, 37(2): 65-76.
    [5]
    LIU T, ZHANG L J, ZHOU G X, et al. BC-DUnet-based segmentation of fine cracks in bridges under a complex background[J]. PloS ONE, 2022, 17(3): e0265258. doi: 10.1371/journal.pone.0265258
    [6]
    CHENG Y H, TIAN L L, YIN C, et al. A magnetic domain spots filtering method with self-adapting threshold value selecting for crack detection based on the MOI[J]. Nonlinear Dynamics, 2016, 86(2): 741-750. doi: 10.1007/s11071-016-2918-7
    [7]
    MA Ya-fei, SUN Wen-kang, HE Yu, et al. Surface crack identification method of concrete bridge based on DC-Unet[J]. Journal of Chang'an University (Natural Science Edition), 2024, 44(3): 66-75.
    [8]
    HOANG N D, NGUYEN Q L, TRAN V D. Automatic recognition of asphalt pavement cracks using metaheuristic optimized edge detection algorithms and convolution neural network[J]. Automation in Construction, 2018, 94: 203-213. doi: 10.1016/j.autcon.2018.07.008
    [9]
    SHENG P, CHEN L, TIAN J. Learning-based road crack detection using gradient boost decision tree[C]//IEEE. 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA). New York: IEEE, 2018: 1228-1232.
    [10]
    NOH Y, KOO D, KANG Y M, et al. Automatic crack detection on concrete images using segmentation via fuzzy C-means clustering[C]//IEEE. 2017 International Conference on Applied System Innovation (ICASI). New York: IEEE, 2017: 877-880.
    [11]
    QU Z, CHEN Y X, LIU L, et al. The algorithm of concrete surface crack detection based on the genetic programming and percolation model[J]. IEEE Access, 2019, 7: 57592-57603. doi: 10.1109/ACCESS.2019.2914259
    [12]
    ZHANG Z Y, LIU Y P, LIU T C, et al. DAGN: A real- time UAV remote sensing image vehicle detection framework[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 17(11): 1884-1888.
    [13]
    CHEN W Y, WANG H F, LI H, et al. Real-time garbage object detection with data augmentation and feature fusion using SUAV low-altitude remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 1-5.
    [14]
    JANG K, AN Y K, KIM B, et al. Automated crack evaluation of a high-rise bridge pier using a ring-type climbing robot[J]. Computer-aided Civil and Infrastructure Engineering, 2021, 36(1): 14-29. doi: 10.1111/mice.12550
    [15]
    SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//IEEE. Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2015: 1-9.
    [16]
    JIANG P Y, ERGU D, LIU F Y, et al. A review of YOLO algorithm developments[J]. Procedia Computer Science, 2022, 199: 1066-1073. doi: 10.1016/j.procs.2022.01.135
    [17]
    MA Ya-fei, SUN Wen-kang, HE Yu, et al. Surface crack identification method of concrete bridge based on DC-Unet[J]. Journal of Chang'an University (Natural Science Edition), 2024, 44(3): 66-75.
    [18]
    XIE X X, CHENG G, WANG J B, et al. Oriented R-CNN for object detection[C]//IEEE. Proceedings of the IEEE/CVF International Conference on Computer Vision. New York: IEEE, 2021: 3520-3529.
    [19]
    GIRSHICK R. Fast R-CNN[C]//IEEE. 2015 IEEE International Conference on Computer Vision. New York: IEEE, 2015: 1440-1448.
    [20]
    REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. doi: 10.1109/TPAMI.2016.2577031
    [21]
    ZHU J Q, ZHONG J T, MA T, et al. Pavement distress detection using convolutional neural networks with images captured via UAV[J]. Automation in Construction, 2022, 133: 103991. doi: 10.1016/j.autcon.2021.103991
    [22]
    JIANG Shi-xin, ZOU Xiao-xue, YANG Jian-xi, et al. Concrete bridge crack detection method based on improved YOLO v8s in complex backgrounds[J]. Journal of Traffic and Transportation Engineering, 2024, 24(6): 135-147. doi: 10.19818/j.cnki.1671-1637.2024.06.009
    [23]
    PENG Yu-nuo, LIU Min, WAN Zhi, et al. A dual deep network based on the improved YOLO for fast bridge surface defect detection[J]. Acta Automatica Sinica, 2022, 48(4): 1018-1032.
    [24]
    YIN Guan-sheng, GAO Jian-guo, SHI Ming-hui, et al. Tunnel crack recognition method under image block[J]. Journal of Traffic and Transportation Engineering, 2022, 22(2): 148-159. doi: 10.19818/j.cnki.1671-1637.2022.02.011
    [25]
    ZHAI Jun-zhi, SUN Zhao-yun, PEI Li-li, et al. Pavement crack detection method based on multi-scale feature enhancement[J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 291-308. doi: 10.19818/j.cnki.1671-1637.2023.01.022
    [26]
    MEI Q P, GVL M, AZIM R. Densely connected deep neural network considering connectivity of pixels for automatic crack detection[J]. Automation in Construction, 2020, 110: 103018. doi: 10.1016/j.autcon.2019.103018
    [27]
    REIS D, HONG J, KUPEC J, et al. Real-time flying object detection with YOLOv8[J]. ArXiv, 2023, DOI: 10.48550/arXiv.2305.09972.
    [28]
    DAI L Y, LIU G, HUANG L, et al. Feature transfer method for infrared and visible image fusion via fuzzy lifting scheme[J]. Infrared Physics and Technology, 2021, 114: 103621. doi: 10.1016/j.infrared.2020.103621
    [29]
    HAN K, WANG Y H, TIAN Q, et al. GhostNet: More features from cheap operations[C]//IEEE. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2020: 1577-1586.
    [30]
    HOWARD A G, ZHU M L, CHEN B, et al. MobileNets: Efficient convolutional neural networks for mobile vision applications[J]. ArXiv, 2017, DOI: 10.48550/arXiv.1704.04861.
    [31]
    SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: Inverted residuals and linear bottlenecks[C]//IEEE. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2018: 4510-4520.
    [32]
    HOWARD A, SANDLER M, CHU G, et al. Searching for MobileNetV3[C]//IEEE. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). New York: IEEE, 2020: 1314-1324.
    [33]
    MISRA D, NALAMADA T, ARASANIPALAI A U, et al. Rotate to attend: Convolutional triplet attention module[C]// IEEE. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). New York: IEEE, 2020: 3138-3147.
    [34]
    LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 318-327. doi: 10.1109/TPAMI.2018.2858826
    [35]
    MA S L, XU Y. MPDIoU: A loss for efficient and accurate bounding box regression[J]. ArXiv, 2023, DOI: 10.48550/arXiv.2307.07662.
    [36]
    LIU Y H, YAO J, LU X H, et al. DeepCrack: A deep hierarchical feature learning architecture for crack segmentation[J]. Neurocomputing, 2019, 338: 139-153. doi: 10.1016/j.neucom.2019.01.036
    [37]
    ZHANG L, YANG F, ZHANG D Y, et al. Roadcrack detection using deep convolutional neural network[C]//IEEE. Proceedings of the IEEE International Conference on Image Processing. New York: IEEE, 2016: 3708-3712.
    [38]
    YANG F, ZHANG L, YU S J, et al. Feature pyramid and hierarchical boosting network for pavement crack detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(4): 1525-1535. doi: 10.1109/TITS.2019.2910595
    [39]
    LI C Y, LI L L, JIANG H L, et al. YOLOv6: A single- stage object detection framework for industrial applications[J]. ArXiv, 2022, https://doi.org/10.48550/arXiv.2209.02976.
    [40]
    WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//IEEE. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2023: 7464-7475.
    [41]
    ZHAO Y A, LYU W Y, XU S L, et al. DETRs beat YOLOs on real-time object detection[J]. ArXiv, 2023, https://doi.org/10.48550/arXiv.2304.08069.
    [42]
    WU T Y, TANG S, ZHANG R, et al. CGNet: A light- weight context guided network for semantic segmentation[J]. IEEE Transactions on Image Processing, 2021, 30: 1169-1179. doi: 10.1109/TIP.2020.3042065
    [43]
    LI C, ZHOU A J, YAO A B. Omni-dimensional dynamic convolution[J]. ArXiv, 2022, https://doi.org/10.48550/arXiv.2209.07947.
    [44]
    HU M, FENG J Y, HUA J S, et al. Online convolutional re-parameterization[J]. ArXiv, 2022, DOI: 10.48550/arXiv.2204.00826.
    [45]
    ZHANG X, LIU C, SONG T T, et al. RFAConv: Innovating spatial attention and standard convolutional operation[J]. ArXiv, 2023, https://doi.org/10.48550/arXiv.2304.03198.
    [46]
    LI J F, WEN Y, HE L H. SCConv: Spatial and channel reconstruction convolution for feature redundancy[C]//IEEE. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2023: 6153-6162.
    [47]
    YANG G Y, LEI J, ZHU Z K, et al. AFPN: Asymptotic feature pyramid network for object detection[J]. ArXiv, 2023, https://doi.org/10.48550/arXiv.2306.15988.

Catalog

    Article Metrics

    Article views (264) PDF downloads(53) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return