| Citation: | YANG Wei, FANG Hong-su, TANG Xiang-song, GAO Wei-yong, ZHOU Yong-jun. Lightweight YOLOv8-ALTE algorithm for bridge crack disease detection[J]. Journal of Traffic and Transportation Engineering, 2025, 25(6): 75-89. doi: 10.19818/j.cnki.1671-1637.2025.06.007 |
| [1] |
Editorial Department of China Journal of Highway and Transport. Review on China's bridge engineering research: 2021[J]. China Journal of Highway and Transport, 2021, 34(2): 1-97.
|
| [2] |
CHEN Lei-lei, ZHAO Xin-yuan, QIAN Zhen-dong, et al. A systematic review of steel bridge deck pavement in China[J]. Journal of Road Engineering, 2023, 3(1): 1-15. doi: 10.1016/j.jreng.2023.01.003
|
| [3] |
ZHANG A A, SHANG J, LI B, et al. Intelligent pavement condition survey: Overview of current researches and practices[J]. Journal of Road Engineering, 2024, 4(3): 257-281. doi: 10.1016/j.jreng.2024.04.003
|
| [4] |
CHU Hong-hu, YUAN Hua-qing, LONG Li-zhi, et al. High-resolution bridge crack image cascade segmentation method based on Transformer[J]. China Journal of Highway and Transport, 2024, 37(2): 65-76.
|
| [5] |
LIU T, ZHANG L J, ZHOU G X, et al. BC-DUnet-based segmentation of fine cracks in bridges under a complex background[J]. PloS ONE, 2022, 17(3): e0265258. doi: 10.1371/journal.pone.0265258
|
| [6] |
CHENG Y H, TIAN L L, YIN C, et al. A magnetic domain spots filtering method with self-adapting threshold value selecting for crack detection based on the MOI[J]. Nonlinear Dynamics, 2016, 86(2): 741-750. doi: 10.1007/s11071-016-2918-7
|
| [7] |
MA Ya-fei, SUN Wen-kang, HE Yu, et al. Surface crack identification method of concrete bridge based on DC-Unet[J]. Journal of Chang'an University (Natural Science Edition), 2024, 44(3): 66-75.
|
| [8] |
HOANG N D, NGUYEN Q L, TRAN V D. Automatic recognition of asphalt pavement cracks using metaheuristic optimized edge detection algorithms and convolution neural network[J]. Automation in Construction, 2018, 94: 203-213. doi: 10.1016/j.autcon.2018.07.008
|
| [9] |
SHENG P, CHEN L, TIAN J. Learning-based road crack detection using gradient boost decision tree[C]//IEEE. 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA). New York: IEEE, 2018: 1228-1232.
|
| [10] |
NOH Y, KOO D, KANG Y M, et al. Automatic crack detection on concrete images using segmentation via fuzzy C-means clustering[C]//IEEE. 2017 International Conference on Applied System Innovation (ICASI). New York: IEEE, 2017: 877-880.
|
| [11] |
QU Z, CHEN Y X, LIU L, et al. The algorithm of concrete surface crack detection based on the genetic programming and percolation model[J]. IEEE Access, 2019, 7: 57592-57603. doi: 10.1109/ACCESS.2019.2914259
|
| [12] |
ZHANG Z Y, LIU Y P, LIU T C, et al. DAGN: A real- time UAV remote sensing image vehicle detection framework[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 17(11): 1884-1888.
|
| [13] |
CHEN W Y, WANG H F, LI H, et al. Real-time garbage object detection with data augmentation and feature fusion using SUAV low-altitude remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 1-5.
|
| [14] |
JANG K, AN Y K, KIM B, et al. Automated crack evaluation of a high-rise bridge pier using a ring-type climbing robot[J]. Computer-aided Civil and Infrastructure Engineering, 2021, 36(1): 14-29. doi: 10.1111/mice.12550
|
| [15] |
SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//IEEE. Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2015: 1-9.
|
| [16] |
JIANG P Y, ERGU D, LIU F Y, et al. A review of YOLO algorithm developments[J]. Procedia Computer Science, 2022, 199: 1066-1073. doi: 10.1016/j.procs.2022.01.135
|
| [17] |
MA Ya-fei, SUN Wen-kang, HE Yu, et al. Surface crack identification method of concrete bridge based on DC-Unet[J]. Journal of Chang'an University (Natural Science Edition), 2024, 44(3): 66-75.
|
| [18] |
XIE X X, CHENG G, WANG J B, et al. Oriented R-CNN for object detection[C]//IEEE. Proceedings of the IEEE/CVF International Conference on Computer Vision. New York: IEEE, 2021: 3520-3529.
|
| [19] |
GIRSHICK R. Fast R-CNN[C]//IEEE. 2015 IEEE International Conference on Computer Vision. New York: IEEE, 2015: 1440-1448.
|
| [20] |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. doi: 10.1109/TPAMI.2016.2577031
|
| [21] |
ZHU J Q, ZHONG J T, MA T, et al. Pavement distress detection using convolutional neural networks with images captured via UAV[J]. Automation in Construction, 2022, 133: 103991. doi: 10.1016/j.autcon.2021.103991
|
| [22] |
JIANG Shi-xin, ZOU Xiao-xue, YANG Jian-xi, et al. Concrete bridge crack detection method based on improved YOLO v8s in complex backgrounds[J]. Journal of Traffic and Transportation Engineering, 2024, 24(6): 135-147. doi: 10.19818/j.cnki.1671-1637.2024.06.009
|
| [23] |
PENG Yu-nuo, LIU Min, WAN Zhi, et al. A dual deep network based on the improved YOLO for fast bridge surface defect detection[J]. Acta Automatica Sinica, 2022, 48(4): 1018-1032.
|
| [24] |
YIN Guan-sheng, GAO Jian-guo, SHI Ming-hui, et al. Tunnel crack recognition method under image block[J]. Journal of Traffic and Transportation Engineering, 2022, 22(2): 148-159. doi: 10.19818/j.cnki.1671-1637.2022.02.011
|
| [25] |
ZHAI Jun-zhi, SUN Zhao-yun, PEI Li-li, et al. Pavement crack detection method based on multi-scale feature enhancement[J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 291-308. doi: 10.19818/j.cnki.1671-1637.2023.01.022
|
| [26] |
MEI Q P, GVL M, AZIM R. Densely connected deep neural network considering connectivity of pixels for automatic crack detection[J]. Automation in Construction, 2020, 110: 103018. doi: 10.1016/j.autcon.2019.103018
|
| [27] |
REIS D, HONG J, KUPEC J, et al. Real-time flying object detection with YOLOv8[J]. ArXiv, 2023, DOI: 10.48550/arXiv.2305.09972.
|
| [28] |
DAI L Y, LIU G, HUANG L, et al. Feature transfer method for infrared and visible image fusion via fuzzy lifting scheme[J]. Infrared Physics and Technology, 2021, 114: 103621. doi: 10.1016/j.infrared.2020.103621
|
| [29] |
HAN K, WANG Y H, TIAN Q, et al. GhostNet: More features from cheap operations[C]//IEEE. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2020: 1577-1586.
|
| [30] |
HOWARD A G, ZHU M L, CHEN B, et al. MobileNets: Efficient convolutional neural networks for mobile vision applications[J]. ArXiv, 2017, DOI: 10.48550/arXiv.1704.04861.
|
| [31] |
SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: Inverted residuals and linear bottlenecks[C]//IEEE. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2018: 4510-4520.
|
| [32] |
HOWARD A, SANDLER M, CHU G, et al. Searching for MobileNetV3[C]//IEEE. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). New York: IEEE, 2020: 1314-1324.
|
| [33] |
MISRA D, NALAMADA T, ARASANIPALAI A U, et al. Rotate to attend: Convolutional triplet attention module[C]// IEEE. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). New York: IEEE, 2020: 3138-3147.
|
| [34] |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 318-327. doi: 10.1109/TPAMI.2018.2858826
|
| [35] |
MA S L, XU Y. MPDIoU: A loss for efficient and accurate bounding box regression[J]. ArXiv, 2023, DOI: 10.48550/arXiv.2307.07662.
|
| [36] |
LIU Y H, YAO J, LU X H, et al. DeepCrack: A deep hierarchical feature learning architecture for crack segmentation[J]. Neurocomputing, 2019, 338: 139-153. doi: 10.1016/j.neucom.2019.01.036
|
| [37] |
ZHANG L, YANG F, ZHANG D Y, et al. Roadcrack detection using deep convolutional neural network[C]//IEEE. Proceedings of the IEEE International Conference on Image Processing. New York: IEEE, 2016: 3708-3712.
|
| [38] |
YANG F, ZHANG L, YU S J, et al. Feature pyramid and hierarchical boosting network for pavement crack detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(4): 1525-1535. doi: 10.1109/TITS.2019.2910595
|
| [39] |
LI C Y, LI L L, JIANG H L, et al. YOLOv6: A single- stage object detection framework for industrial applications[J]. ArXiv, 2022, https://doi.org/10.48550/arXiv.2209.02976.
|
| [40] |
WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//IEEE. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2023: 7464-7475.
|
| [41] |
ZHAO Y A, LYU W Y, XU S L, et al. DETRs beat YOLOs on real-time object detection[J]. ArXiv, 2023, https://doi.org/10.48550/arXiv.2304.08069.
|
| [42] |
WU T Y, TANG S, ZHANG R, et al. CGNet: A light- weight context guided network for semantic segmentation[J]. IEEE Transactions on Image Processing, 2021, 30: 1169-1179. doi: 10.1109/TIP.2020.3042065
|
| [43] |
LI C, ZHOU A J, YAO A B. Omni-dimensional dynamic convolution[J]. ArXiv, 2022, https://doi.org/10.48550/arXiv.2209.07947.
|
| [44] |
HU M, FENG J Y, HUA J S, et al. Online convolutional re-parameterization[J]. ArXiv, 2022, DOI: 10.48550/arXiv.2204.00826.
|
| [45] |
ZHANG X, LIU C, SONG T T, et al. RFAConv: Innovating spatial attention and standard convolutional operation[J]. ArXiv, 2023, https://doi.org/10.48550/arXiv.2304.03198.
|
| [46] |
LI J F, WEN Y, HE L H. SCConv: Spatial and channel reconstruction convolution for feature redundancy[C]//IEEE. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2023: 6153-6162.
|
| [47] |
YANG G Y, LEI J, ZHU Z K, et al. AFPN: Asymptotic feature pyramid network for object detection[J]. ArXiv, 2023, https://doi.org/10.48550/arXiv.2306.15988.
|