| Citation: | JIA Xing-li, QU Yuan-hai, ZHU Hao-ran, YANG Hong-zhi, YAO Hui, LI Meng-hui. Research review on STGNN in traffic prediction: From model deconstruction to development path[J]. Journal of Traffic and Transportation Engineering, 2026, 26(1): 46-74. doi: 10.19818/j.cnki.1671-1637.2026.01.003 |
| [1] |
FENG Xiao, CHEN Si-long. An ITS method to decrease motor-vehicle pollution in urban area[J]. Journal of Traffic and Transportation Engineering, 2002, 2(2): 73-77. doi: 10.3321/j.issn:1671-1637.2002.02.018
|
| [2] |
FENG K R, LIN N. Reconstructing and analyzing the traffic flow during evacuation in Hurricane Irma (2017)[J]. Transportation Research Part D: Transport and Environ-ment, 2021, 94: 102788. doi: 10.1016/j.trd.2021.102788
|
| [3] |
ZANG Hua, PENG Guo-xiong. A forecast model of queuing length in expressway emergency[J]. Computer and Commu-nications, 2003, 21(3): 10-12.
|
| [4] |
LARTEY J D. Predicting traffic congestion: A queuing perspective[J]. Open Journal of Modelling and Simulation, 2014, 2(2): 57-66. doi: 10.4236/ojmsi.2014.22008
|
| [5] |
WANG Yong-quan, CHEN Hua-ling, MAO Wen-xiong. Research on road traffic noise prediction model based on car-following theory[J]. Acta Simulata Systematica Sinica, 2004, 16(11): 2413-2416.
|
| [6] |
DAGANZO C F. The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory[J]. Transportation Research Part B: Methodological, 1994, 28(4): 269-287. doi: 10.1016/0191-2615(94)90002-7
|
| [7] |
XU X, ZHANG L L, KONG Q, et al. Enhanced-historical average for long-term prediction[C]//IEEE. 2022 2nd International Conference on Computer, Control and Robotics (ICCCR). New York: IEEE, 2022: 115-119.
|
| [8] |
HAMED M M, AL-MASAEID H R, SAID Z M B. Short-term prediction of traffic volume in urban arterials[J]. Journal of Transportation Engineering, 1995, 121(3): 249-254. doi: 10.1061/(ASCE)0733-947X(1995)121:3(249)
|
| [9] |
SHAHRIARI S, GHASRI M, SISSON S A, et al. Ensemble of ARIMA: Combining parametric and bootstrapping technique for traffic flow prediction[J]. Transportmetrica A: Transport Science, 2020, 16(3): 1552-1573. doi: 10.1080/23249935.2020.1764662
|
| [10] |
CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273-297. doi: 10.1023/A:1022627411411
|
| [11] |
BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32. doi: 10.1023/A:1010933404324
|
| [12] |
COVER T, HART P. Nearest neighbor pattern classification[J]. IEEE Transactions on Information Theory, 1967, 13(1): 21-27. doi: 10.1109/TIT.1967.1053964
|
| [13] |
WU C H, HO J M, LEE D T. Travel-time prediction with support vector regression[J]. IEEE Transactions on Intelligent Transportation Systems, 2004, 5(4): 276-281. doi: 10.1109/TITS.2004.837813
|
| [14] |
RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323: 533-536. doi: 10.1038/323533a0
|
| [15] |
BAO X X, JIANG D, YANG X F, et al. An improved deep belief network for traffic prediction considering weather factors[J]. Alexandria Engineering Journal, 2021, 60(1): 413-420. doi: 10.1016/j.aej.2020.09.003
|
| [16] |
ZHANG W B, YU Y H, QI Y, et al. Short-term traffic flow prediction based on spatio-temporal analysis and CNN deep learning[J]. Transportmetrica A: Transport Science, 2019, 15(2): 1688-1711. doi: 10.1080/23249935.2019.1637966
|
| [17] |
WILLIAMS R J, ZIPSER D. A learning algorithm for continually running fully recurrent neural networks[J]. Neural Computation, 1989, 1(2): 270-280. doi: 10.1162/neco.1989.1.2.270
|
| [18] |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. doi: 10.1162/neco.1997.9.8.1735
|
| [19] |
CHO K, VAN MERRIENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]//ACL. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Doha: ACL, 2014: 1724-1734.
|
| [20] |
ASHISH V, NOAM S, NIKI P, et al. Attention is all you need[C]//NeurIPS Foundation. Conference on Neural Infor-mation Processing Systems. Cambridge: MIT Press, 2017: 6000-6010.
|
| [21] |
MA Fei, YANG Zhi-jie, WANG Jiang-bo, et al. Short-term traffic flow speed prediction model based on meteorological-traffic multi-channel data fusion[J]. Journal of Traffic and Transportation Engineering, 2024, 24(6): 183-196. doi: 10.19818/j.cnki.1671-1637.2024.06.013
|
| [22] |
HU Li-wei, HOU Zhi, ZHAO Xue-ting, et al. Research on improvement of highway traffic risk prediction model based on traffic accident text mining[J/OL]. Journal of Southwest Jiaotong University, 2025,
|
| [23] |
MA C X, ZHAO Y P, DAI G W, et al. A novel STFSA-CNN-GRU hybrid model for short-term traffic speed prediction[J]. IEEE Transactions on Intelligent Trans-portation Systems, 2023, 24(4): 3728-3737. doi: 10.1109/TITS.2021.3117835
|
| [24] |
BEECHE C, SINGH J P, LEADER J K, et al. Super U-Net: A modularized generalizable architecture[J]. Pattern Recog-nition, 2022, 128: 108669. doi: 10.1016/j.patcog.2022.108669
|
| [25] |
ZHANG Z B, WU S, JIANG D W, et al. BERT-JAM: Maximizing the utilization of BERT for neural machine translation[J]. Neurocomputing, 2021, 460: 84-94. doi: 10.1016/j.neucom.2021.07.002
|
| [26] |
YANG Guo-liang, XI Hao, GONG Jia-ren, et al. Short term traffic flow forecasting based on transformer[J]. Computer Applications and Software, 2024, 41(3): 169-173, 225.
|
| [27] |
LI Y G, YU R, CYRUS S, et al. Diffusion convolutional recurrent neural network: Data-driven traffic forecasting[C]//YOSHUA B, YANN L. International Conference on Learning Representations. Portland: OpenReview. net, 2018: 1-16.
|
| [28] |
DONG Z, JIANG R H, GAO H T, et al. Heterogeneity-informed meta-parameter learning for spatiotemporal time series forecasting[C]//ACM. Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2024: 631-641.
|
| [29] |
LI H, LIU J, HAN S Y, et al. STFGCN: Spatial-temporal fusion graph convolutional network for traffic prediction[J]. Expert Systems with Applications, 2024, 255: 124648. doi: 10.1016/j.eswa.2024.124648
|
| [30] |
WANG S Z, CAO J N, YU P S. Deep learning for spatio-temporal data mining: A survey[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(8): 3681-3700. doi: 10.1109/TKDE.2020.3025580
|
| [31] |
CUI Jian-xun, YAO Jia, ZHAO Bo-yuan. Review on short-term traffic flow prediction methods based on deep learning[J]. Journal of Traffic and Transportation Engineering, 2024, 24(2): 50-64. doi: 10.19818/j.cnki.1671-1637.2024.02.003
|
| [32] |
ZOU Hui-qi, SHI Bin-ze, SONG Ling-yun, et al. Survey on complex spatio-temporal data mining methods based on graph neural networks[J]. Journal of Software, 2025, 36(4): 1811-1843.
|
| [33] |
HU Zuo-an, DENG Jin-cheng, HAN Jin-li, et al. Review on application of graph neural network in traffic prediction[J]. Journal of Traffic and Transportation Engineering, 2023, 23(5): 39-61. doi: 10.19818/j.cnki.1671-1637.2023.05.003
|
| [34] |
XIONG Zhang-you, LI Wei-jun, ZHU Xiao-juan, et al. Short-term traffic flow prediction based on deep learning[J]. Computer Engineering and Applications, 2025, 61(11): 67-82.
|
| [35] |
LIU M Z, ZHU T Y, YE J C, et al. Spatio-temporal autoencoder for traffic flow prediction[J]. IEEE Transac-tions on Intelligent Transportation Systems, 2023, 24(5): 5516-5526. doi: 10.1109/TITS.2023.3243913
|
| [36] |
ABDELRAOUF A, ABDEL-ATY M, YUAN J H. Utilizing attention-based multi-encoder-decoder neural networks for freeway traffic speed prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(8): 11960-11969. doi: 10.1109/TITS.2021.3108939
|
| [37] |
WU X L, ZHANG D L, GUO C J, et al. AutoCTS: Automated correlated time series forecasting[J]. Proceedings of the VLDB Endowment, 2022, 15(4): 971-983.
|
| [38] |
ZOU G J, LAI Z L, MA C X, et al. When will we arrive a novel multi-task spatio-temporal attention network based on individual preference for estimating travel time[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(10): 11438-11452. doi: 10.1109/TITS.2023.3276916
|
| [39] |
WANG B B, LIN Y F, GUO S N, et al. GSNet: Learning spatial-temporal correlations from geographical and semantic aspects for traffic accident risk forecasting[C]//AAAI. Proceedings of the AAAI Conference on Artificial Intel-ligence. Washington DC: AAAI Press, 2021: 4402-4409.
|
| [40] |
WANG Z N, JIANG R H, XUE H, et al. Event-aware multimodal mobility nowcasting[C]//AAAI. Proceedings of the AAAI Conference on Artificial Intelligence. Washington DC: AAAI Press, 2022: 4228-4236.
|
| [41] |
JIA Xing-li, LI Shuang-qing, YANG Hong-zhi, et al. Prediction of the duration of freeway traffic incidents based on an ATT-LSTM model[J]. Journal of Transport Information and Safe, 2022, 40(5): 61-69.
|
| [42] |
YE J C, SUN L L, DU B W, et al. Coupled layer-wise graph convolution for transportation demand prediction[C]//AAAI. Proceedings of the AAAI Conference on Artificial Intelligence. Washington DC: AAAI Press, 2021: 4616-4625.
|
| [43] |
WANG S Y, ZHUGE C X, SHAO C F, et al. Short-term electric vehicle charging demand prediction: A deep learning approach[J]. Applied Energy, 2023, 340: 121032. doi: 10.1016/j.apenergy.2023.121032
|
| [44] |
LIANG Y B, DING F Y, HUANG G, et al. Deep trip generation with graph neural networks for bike sharing system expansion[J]. Transportation Research Part C: Emerging Technologies, 2023, 154: 104241. doi: 10.1016/j.trc.2023.104241
|
| [45] |
HUANG Y J, DU J T, YANG Z R, et al. A survey on trajectory-prediction methods for autonomous driving[J]. IEEE Transactions on Intelligent Vehicles, 2022, 7(3): 652-674. doi: 10.1109/TIV.2022.3167103
|
| [46] |
CHEN G X, HU L, ZHANG Q S, et al. ST-LSTM: Spatio-temporal graph based long short-term memory network for vehicle trajectory prediction[C]//IEEE. 2020 IEEE Inter-national Conference on Image Processing (ICIP). New York: IEEE, 2020: 608-612.
|
| [47] |
LI F X, YAN H, JIN G Y, et al. Automated spatio-temporal synchronous modeling with multiple graphs for traffic prediction[C]//ACM. Proceedings of the 31st ACM Inter-national Conference on Information & Knowledge Manage-ment. New York: ACM, 2022: 1084-1093.
|
| [48] |
WU Z H, PAN S R, LONG G D, et al. Connecting the dots: Multivariate time series forecasting with graph neural networks[C]//ACM. Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2020: 753-763.
|
| [49] |
FANG Z, LONG Q Q, SONG G J, et al. Spatial-temporal graph ODE networks for traffic flow forecasting[C]//ACM. Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. New York: ACM, 2021: 364-373.
|
| [50] |
SONG C, LIN Y F, GUO S N, et al. Spatial-temporal synchronous graph convolutional networks: A new frame-work for spatial-temporal network data forecasting[C]//AAAI. Proceedings of the AAAI Conference on Artificial Intelligence. Washington DC: AAAI Press, 2020: 914-921.
|
| [51] |
CHEN Y Z, DOMINGUEZ I S, GEL Y R. Z-GCNETs: Time zigzags at graph convolutional networks for time series forecasting[C]//ACM. International Conference on Machine Learning. New York: ACM, 2021: 1684-1694.
|
| [52] |
GUO S N, LIN Y F, FENG N, et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting[C]//AAAI. Proceedings of the AAAI Confe-rence on Artificial Intelligence. Washington DC: AAAI Press, 2019: 922-929.
|
| [53] |
YU B, YIN H T, ZHU Z X. Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting[C]//AAAI. Proceedings of the 27th International Joint Conference on Artificial Intelligence. Washington DC: AAAI Press, 2018: 3634-3640.
|
| [54] |
ZHAO Wen-zhu, YUAN Guan, ZHANG Yan-mei, et al. Multi-view fused spatial-temporal dynamic GCN for urban traffic flow prediction[J]. Journal of Software, 2024, 35(4): 1751-1773.
|
| [55] |
CAO D F, WANG Y J, DUAN J Y, et al. Spectral temporal graph neural network for multivariate time-series forecasting[C]//NeurIPS Foundation. Conference on Neural Infor-mation Processing Systems. Cambridge: MIT Press, 2020: 17766-17778.
|
| [56] |
WU Z H, PAN S R, LONG G D, et al. Graph WaveNet for deep spatial-temporal graph modeling[C]//AAAI. Proceedings of the 28th International Joint Conference on Artificial Intelligence. Washington DC: AAAI Press, 2019: 1907-1913.
|
| [57] |
LAI Z C, ZHANG D L, LI H, et al. LightCTS*: Light-weight correlated time series forecasting enhanced with model distillation[J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36(12): 8695-8710. doi: 10.1109/TKDE.2024.3424451
|
| [58] |
JIANG R H, WANG Z N, YONG J W, et al. Spatio-temporal meta-graph learning for traffic forecasting[C]//AAAI. Proceedings of the AAAI Conference on Artificial Intelligence. Washington DC: AAAI Press, 2023: 8078-8086.
|
| [59] |
LEE H, KO S. TESTAM: A time-enhanced spatio-temporal attention model with mixture of experts[C]//YOSHUA B, YANN L. International Conference on Learning Represen-tations. Portland: OpenReview. net, 2024: 1-19.
|
| [60] |
LIU D C, WANG J, SHANG S, et al. MSDR: Multi-step dependency relation networks for spatial temporal forecasting[C]//ACM. Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2022: 1042-1050.
|
| [61] |
ZHANG J B, ZHENG Y, QI D K. Deep spatio-temporal residual networks for citywide crowd flows prediction[C]//AAAI. AAAI Conference on Artificial Intelligence. Washington DC: AAAI Press, 2017: 1-7.
|
| [62] |
LI X Y, XU Y, CHEN Q, et al. Short-term forecast of bicycle usage in bike sharing systems: A spatial-temporal memory network[J]. IEEE Transactions on Intelligent Trans-portation Systems, 2022, 23(8): 10923-10934. doi: 10.1109/TITS.2021.3097240
|
| [63] |
ZHOU Z Y, WANG Y, XIE X K, et al. RiskOracle: A minute-level citywide traffic accident forecasting framework[C]//AAAI. Proceedings of the AAAI Conference on Artificial Intelligence. Washington DC: AAAI Press, 2020: 1258-1265.
|
| [64] |
JIN G Y, WANG M, ZHANG J L, et al. STGNN-TTE: Travel time estimation via spatial-temporal graph neural network[J]. Future Generation Computer Systems, 2022, 126: 70-81. doi: 10.1016/j.future.2021.07.012
|
| [65] |
JIANG J W, PAN D Y, REN H X, et al. Self-supervised trajectory representation learning with temporal regularities and travel semantics[C]//IEEE. 2023 IEEE 39th Inter-national Conference on Data Engineering (ICDE). New York: IEEE, 2023: 843-855.
|
| [66] |
YUAN J, ZHENG Y, XIE X, et al. Driving with knowledge from the physical world[C]//ACM. Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2011: 316-324.
|
| [67] |
YUAN J, ZHENG Y, ZHANG C Y, et al. T-drive: Driving directions based on taxi trajectories[C]//ACM. Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York: ACM, 2010: 99-108.
|
| [68] |
YAN B Q, ZHAO G, SONG L X, et al. PreCLN: Pretrained-based contrastive learning network for vehicle trajectory prediction[J]. World Wide Web, 2023, 26(4): 1853-1875. doi: 10.1007/s11280-022-01121-3
|
| [69] |
LIAO H C, LI X L, LI Y K, et al. Characterized diffusion and spatial-temporal interaction network for trajectory prediction in autonomous driving[C]//AAAI. International Joint Conference on Artificial Intelligence. Washington DC: AAAI Press, 2024: 1-9.
|
| [70] |
CHEN X B, ZHANG H J, ZHAO F, et al. Intention-aware vehicle trajectory prediction based on spatial-temporal dynamic attention network for Internet of vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10): 19471-19483. doi: 10.1109/TITS.2022.3170551
|
| [71] |
KRAJEWSKI R, BOCK J, KLOEKER L, et al. The highD dataset: A drone dataset of naturalistic vehicle trajectories on German highways for validation of highly automated driving systems[C]//IEEE. 2018 21st International Conference on Intelligent Transportation Systems (ITSC). New York: IEEE, 2018: 2118-2125.
|
| [72] |
CHANG M-F, LAMBERT J, SANGKLOY P, et al. Argoverse: 3D tracking and forecasting with rich maps[C]//IEEE. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2019: 8740-8749.
|
| [73] |
LIANG M, YANG B, HU R, et al. Learning lane graph representations for motion forecasting[C]//Springer. Proceedings of 16th European Conference on Computer Vision (ECCV). Munich: Springer, 2020: 541-556.
|
| [74] |
YUAN Jing, XIA Ying. Vehicle trajectory prediction based on spatial-temporal graph attention convolutional network[J]. Computer Science, 2024, 51(12): 157-165.
|
| [75] |
CHANG Y C, QI J Z, LIANG Y X, et al. Contrastive trajectory similarity learning with dual-feature attention[C]//IEEE. 2023 IEEE 39th International Conference on Data Engineering (ICDE). New York: IEEE, 2023: 2933-2945.
|
| [76] |
FU Xiang-jun. Research on traffic forecasting of related sections based on topological structure of road network[D]. Chongqing: Chongqing Jiaotong University, 2020.
|
| [77] |
WEN Zhen-guo. Study on structural characteristics and robustness of Shaanxi expressway network based on complex network theory[D]. Xi'an: Chang'an University, 2019.
|
| [78] |
CHEN Xi, QIAN Jiang-hai, HAN Ding-ding. Tree network under space L and space P model[J]. Application Research of Computers, 2015, 32 (1): 45-47.
|
| [79] |
WANG X Y, MA Y, WANG Y Q, et al. Traffic flow prediction via spatial temporal graph neural network[C]//ACM. Proceedings of The Web Conference 2020. New York: ACM, 2020: 1082-1092.
|
| [80] |
GAO A, ZHENG L J, WANG Z X, et al. Attention based short-term metro passenger flow prediction[M]. Munich: Springer International Publishing, 2021.
|
| [81] |
GUO K, HU Y L, QIAN Z, et al. Optimized graph convolution recurrent neural network for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(2): 1138-1149. doi: 10.1109/TITS.2019.2963722
|
| [82] |
SUN Jun, PAN Yu-jun, HE Rui-fang, et al. The enligh-tenment of geographical theories construction from the first law of geography and its debates[J]. Geographical Research, 2012, 31(10): 1749-1763.
|
| [83] |
TAN Hui-sheng, YANG Wei, YAN Shu-qi. Research on spatio-temporal graph convolutional network for traffic speed prediction and their FPGA implementation[J]. Electronic Measurement Technology, 2024, 47(18): 108-119.
|
| [84] |
ZHAO L, SONG Y J, ZHANG C, et al. T-GCN: A temporal graph convolutional network for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(9): 3848-3858. doi: 10.1109/TITS.2019.2935152
|
| [85] |
QI Duo, MAO Zheng-yuan. Short-term traffic flow predic-tion based on adaptive time slice and KNN[J]. Journal of Geo-information Science, 2022, 24(2): 339-351.
|
| [86] |
LV M Q, HONG Z X, CHEN L, et al. Temporal multi-graph convolutional network for traffic flow prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(6): 3337-3348. doi: 10.1109/TITS.2020.2983763
|
| [87] |
LI P, WANG S, ZHAO H T, et al. IG-net: An interaction graph network model for metro passenger flow forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(4): 4147-4157. doi: 10.1109/TITS.2023.3235805
|
| [88] |
XU G, LI Y G, WANG L Y, et al. Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting[C]//AAAI. Proceedings of the AAAI Conference on Artificial Intelligence. Washington DC: AAAI Press, 2019: 3656-3663.
|
| [89] |
LIU L B, CHEN J W, WU H F, et al. Physical-virtual collaboration modeling for intra- and inter-station metro ridership prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(4): 3377-3391. doi: 10.1109/TITS.2020.3036057
|
| [90] |
BAO Yin-xin, CAO Yang, SHI Quan. Improved spatio-temporal residual convolutional neural network for urban road network short-term traffic flow prediction[J]. Journal of Computer Applications, 2022, 42(1): 258-264.
|
| [91] |
CHAI D, WANG L Y, YANG Q. Bike flow prediction with multi-graph convolutional networks[C]//ACM. Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York: ACM, 2018: 397-400.
|
| [92] |
PU Wen-wen. Research on trajectory prediction algorithm of multi-class traffic participants[D]. Changsha: Hunan University, 2021.
|
| [93] |
SHAO W, JIN Z L, WANG S, et al. Long-term spatio-temporal forecasting via dynamic multiple-graph attention[C]//AAAI. Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence. Washington DC: AAAI Press, 2022: 1-8.
|
| [94] |
LIU R W, LIANG M H, NIE J T, et al. STMGCN: Mobile edge computing-empowered vessel trajectory prediction using spatio-temporal multigraph convolutional network[J]. IEEE Transactions on Industrial Informatics, 2022, 18(11): 7977-7987. doi: 10.1109/TII.2022.3165886
|
| [95] |
LUO X L, ZHU C J, ZHANG D T, et al. Dynamic graph convolutional network with attention fusion for traffic flow prediction[C]//Springer. Proceedings of 26th European Conference on Artificial Intelligence (ECAI). Munich: Springer, 2023: 1-8.
|
| [96] |
MA Y, LOU H J, YAN M, et al. Spatio-temporal fusion graph convolutional network for traffic flow forecasting[J]. Information Fusion, 2024, 104: 102196. doi: 10.1016/j.inffus.2023.102196
|
| [97] |
ZHANG W, ZHU F H, LV Y S, et al. AdapGL: An adaptive graph learning algorithm for traffic prediction based on spatiotemporal neural networks[J]. Transportation Research Part C: Emerging Technologies, 2022, 139: 103659. doi: 10.1016/j.trc.2022.103659
|
| [98] |
QU Y H, JIA X L, GUO J H, et al. MSSTGNN: Multi-scaled spatio-temporal graph neural networks for short- and long-term traffic prediction[J]. Knowledge-based Systems, 2024, 306: 112716. doi: 10.1016/j.knosys.2024.112716
|
| [99] |
CHAUHAN V K, ZHOU J D, LU P, et al. A brief review of hypernetworks in deep learning[J]. Artificial Intelligence Review, 2024, 57(9): 250. doi: 10.1007/s10462-024-10862-8
|
| [100] |
PENG Y F, GUO Y Y, HAO R, et al. Network traffic prediction with attention-based spatial-temporal graph network[J]. Computer Networks, 2024, 243: 110296. doi: 10.1016/j.comnet.2024.110296
|
| [101] |
SHIN Y, YOON Y. PGCN: Progressive graph convolutional networks for spatial-temporal traffic forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(7): 7633-7644. doi: 10.1109/TITS.2024.3349565
|
| [102] |
JIN G Y, LIU C X, XI Z X, et al. Adaptive dual-view WaveNet for urban spatial-temporal event prediction[J]. Information Sciences, 2022, 588: 315-330. doi: 10.1016/j.ins.2021.12.085
|
| [103] |
WU Yong-qing, JIANG Zheng-yu. Traffic flow prediction based on decoupled dynamic spatial-temporal convolutional recurrent network [J/OL]. Computer Engineering, 2025, DOI:
|
| [104] |
TA X X, LIU Z H, HU X, et al. Adaptive spatio-temporal graph neural network for traffic forecasting[J]. Knowledge-Based Systems, 2022, 242: 108199. doi: 10.1016/j.knosys.2022.108199
|
| [105] |
LV Z Q, WANG X T, CHENG Z S, et al. ST-TDCN: A two-channel tree-structure spatial-temporal convolutional network model for traffic velocity prediction[J]. Expert Systems with Applications, 2024, 257: 125053. doi: 10.1016/j.eswa.2024.125053
|
| [106] |
WANG F, SUN J M. Survey on distance metric learning and dimensionality reduction in data mining[J]. Data Mining and Knowledge Discovery, 2015, 29(2): 534-564. doi: 10.1007/s10618-014-0356-z
|
| [107] |
WOJKE N, BEWLEY A. Deep cosine metric learning for person re-identification[C]//IEEE. 2018 IEEE Winter Conference on Applications of Computer Vision (WACV). New York: IEEE, 2018: 748-756.
|
| [108] |
CHEN Y, WU L F, ZAKI M J. Iterative deep graph learning for graph neural networks: Better and robust node embeddings[C]//NeurIPS Foundation. Proceedings of 34th Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2020: 19314-19326.
|
| [109] |
LI R Y, WANG S, ZHU F Y, et al. Adaptive graph convolutional neural networks[C]//AAAI. Proceedings of the AAAI Conference on Artificial Intelligence. Washington DC: AAAI Press, 2018: 3546-3553.
|
| [110] |
LIU H Y, YANG D H, LIU X Z, et al. TodyNet: Temporal dynamic graph neural network for multivariate time series classification[J]. Information Sciences, 2024, 677: 120914. doi: 10.1016/j.ins.2024.120914
|
| [111] |
LUCA F, MATHIAS N, MASSIMILIANO P, et al. Learning discrete structures for graph neural networks[C]//ACM. Proceedings of 36th International Conference on Machine Learning. New York: ACM, 2019: 1972-1982.
|
| [112] |
ZHENG C, ZONG B, CHENG W, et al. Robust graph representation learning via neural sparsification[C]//ACM. Proceedings of 37th International Conference on Machine Learning. New York: ACM, 2020: 11458-11468.
|
| [113] |
JIN G Y, LIANG Y X, FANG Y C, et al. Spatio-temporal graph neural networks for predictive learning in urban computing: A survey[J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36(10): 5388-5408. doi: 10.1109/TKDE.2023.3333824
|
| [114] |
GUO K, HU Y L, SUN Y F, et al. Hierarchical graph convolution network for traffic forecasting[C]//AAAI. Proceedings of the AAAI Conference on Artificial Intel-ligence. Washington DC: AAAI Press, 2021: 151-159.
|
| [115] |
AGARWAL S, SAWHNEY R, THAKKAR M, et al. THINK: Temporal hypergraph hyperbolic network[C]//IEEE. 2022 IEEE International Conference on Data Mining (ICDM). New York: IEEE, 2022: 849-854.
|
| [116] |
HOU Yue, ZHANG Xin, XI Zhu-tao, et al. Spatio-temporal heterogeneous traffic flow prediction under special road network topology deconstruction[J/OL]. Journal of Railway Science and Engineering, 2025, 22(7): 2932-2945.
|
| [117] |
WANG J C, ZHANG Y, WEI Y, et al. Metro passenger flow prediction via dynamic hypergraph convolution networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(12): 7891-7903. doi: 10.1109/TITS.2021.3072743
|
| [118] |
ZHAO Y S, LUO X, JU W, et al. Dynamic hypergraph structure learning for traffic flow forecasting[C]//IEEE. 2023 IEEE 39th International Conference on Data Engi-neering (ICDE). New York: IEEE, 2023: 2303-2316.
|
| [119] |
SCHUSTER M, PALIWAL K K. Bidirectional recurrent neural networks[J]. IEEE Transactions on Signal Processing, 1997, 45(11): 2673-2681. doi: 10.1109/78.650093
|
| [120] |
LEA C, VIDAL R, REITER A, et al. Temporal convolutional networks: A unified approach to action segmentation[C]//Springer. Proceedings of 12th European Conference on Computer Vision (ECCV). Munich: Springer, 2016: 47-54.
|
| [121] |
ZHANG X Y, JIN X Y, GOPALSWAMY K, et al. First de-trend then attend: Rethinking attention for time-series forecasting[C]//NeurIPS Foundation. Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2022: 1-11.
|
| [122] |
ZHOU T, MA Z Q, WEN Q S, et al. FEDformer: Frequency enhanced decomposed transformer for long-term series forecasting[C]//ACM. International Conference on Machine Learning. New York: ACM, 2022: 27268-27286.
|
| [123] |
ZHOU H Y, ZHANG S H, PENG J Q, et al. Informer: Beyond efficient transformer for long sequence time-series forecasting[C]//AAAI. Proceedings of the AAAI Confe-rence on Artificial Intelligence. Washington DC: AAAI Press, 2021: 11106-11115.
|
| [124] |
LIU Y, TU T G, ZHANG H R, et al. Transformer: Inverted transformers are effective for time series forecasting[C]//YOSHUA B, YANN L. International Conference on Learning Representations. Portland: OpenReview. net, 2024: 1-25.
|
| [125] |
LIU Y M, WU X, TANG Y, et al. Decomposition with feature attention and graph convolution network for traffic forecasting[J]. Knowledge-based Systems, 2024, 300: 112193. doi: 10.1016/j.knosys.2024.112193
|
| [126] |
ZHOU H Y, ZHANG S H, PENG J Q, et al. Informer: Beyond efficient transformer for long sequence time-series forecasting[C]//AAAI. Proceedings of the AAAI Confe-rence on Artificial Intelligence. Washington DC: AAAI, 2021: 11106-11115.
|
| [127] |
LIU H C, DONG Z, JIANG R H, et al. Spatio-temporal adaptive embedding makes vanilla transformer SOTA for traffic forecasting[C]//ACM. Proceedings of the 32nd ACM International Conference on Information and Knowledge Management. New York: ACM, 2023: 4125-4129.
|
| [128] |
DAUPHIN Y N, FAN A, AULI M, et al. Language modeling with gated convolution networks[C]//ACM. International Conference on Machine Learning. New York: ACM, 2017: 933-941.
|
| [129] |
LIU Z M, WANG Y X, VAIDYA S, et al. KAN: Kolmogorov-arnold network[C]//YUE Y. International Conference on Learning Representations. Amherst: OpenReview. net, 2025: 1-50.
|
| [130] |
GAO Y, HU Z H, CHEN W A, et al. A revolutionary neural network architecture with interpretability and flexibility based on Kolmogorov-Arnold for solar radiation and temperature forecasting[J]. Applied Energy, 2025, 378: 124844. doi: 10.1016/j.apenergy.2024.124844
|
| [131] |
LIVIERIS I E. C-KAN: A new approach for integrating convolutional layers with Kolmogorov-Arnold networks for time-series forecasting[J]. Mathematics, 2024, 12(19): 3022. doi: 10.3390/math12193022
|
| [132] |
LIU X F, YANG Z L, GUO Y J, et al. A novel correlation feature self-assigned Kolmogorov-Arnold networks for multi-energy load forecasting in integrated energy systems[J]. Energy Conversion and Management, 2025, 325: 119388. doi: 10.1016/j.enconman.2024.119388
|
| [133] |
GU A, DAO T. Mamba: Linear-time sequence modeling with selective state spaces[C]//YEJIN C, DANNY Z. Proceedings of 1st Conference on Language Modeling. Amherst: Open-Review. net, 2024: 1-36.
|
| [134] |
LIN W X, ZHANG Z, REN G, et al. MGCN: Mamba-integrated spatiotemporal graph convolutional network for long-term traffic forecasting[J]. Knowledge-based Systems, 2025, 309: 112875. doi: 10.1016/j.knosys.2024.112875
|
| [135] |
MEHRABIAN A, WONG V W S. A-gamba: An adaptive graph-mamba model for traffic prediction in wireless cellular networks[J]. IEEE Wireless Communications Letters, 2025, 14(6): 1801-1805. doi: 10.1109/LWC.2025.3557313
|
| [136] |
SHAO Z Q, WANG Z, YAO X S, et al. ST-MambaSync: Complement the power of Mamba and Transformer fusion for less computational cost in spatial-temporal traffic forecasting[J]. Information Fusion, 2025, 117: 102872. doi: 10.1016/j.inffus.2024.102872
|
| [137] |
ZHOU J, CUI G Q, HU S D, et al. Graph neural networks: A review of methods and applications[J]. AI Open, 2020, 1: 57-81. doi: 10.1016/j.aiopen.2021.01.001
|
| [138] |
XIANG Yi, FENG Qiang. Weighted convolution of the Fourier sine-cosine transform and its application[J]. Journal of Zhejiang University (Science Edition), 2023, 50(3): 266-272.
|
| [139] |
HAMMOND D K, VANDERGHEYNST P, GRIBONVAL R. Wavelets on graphs via spectral graph theory[J]. Applied and Computational Harmonic Analysis, 2011, 30(2): 129-150. doi: 10.1016/j.acha.2010.04.005
|
| [140] |
HE M G, WEI Z W, HUANG Z F, et al. BernNet: Learning arbitrary graph spectral filters via Bernstein approximation[C]//NeurIPS Foundation. Conference on Neural Infor-mation Processing Systems. Cambridge: MIT Press, 2021: 1-16.
|
| [141] |
CHIEN E L, PENG J H, LI P, et al. Adaptive universal generalized PageRank graph neural network[C]//YOSHUA B, YANN L. International Conference on Learning Repre-sentations. Amherst: OpenReview. net, 2021: 1-24.
|
| [142] |
KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[C]// YOSHUA B, YANN L. International Conference on Learning Representations. Amherst: OpenReview. net, 2017: 1-14.
|
| [143] |
GILMER J, SCHOENHOLZ S S, RILEY P F, et al. Neural message passing for quantum chemistry[C]//ACM. International Conference on Machine Learning. New York: ACM, 2017: 1263-1272.
|
| [144] |
HAMILTON W L, YING R, LESKOVEC J. Inductive representation learning on large graphs[C]//NeurIPS Foundation. Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2017: 1025-1035.
|
| [145] |
LOUIS-PASCAL A C X, QU M, TANG J. Continuous graph neural networks[C]//ACM. International Conference on Machine Learning. New York: ACM, 2020: 1-15.
|
| [146] |
KIPF T N, WELLING M. Variational graph auto-encoders[C]//NeurIPS Foundation. Conference on Neural Infor-mation Processing Systems. Cambridge: MIT Press, 2016: 1-3.
|
| [147] |
VELICKOVIC P, CUCURULL G, CASANOVA A, et al. Graph attention networks[C]//YOSHUA B, YANN L. International Conference on Learning Representations. Amherst: OpenReview. net, 2018: 1-12.
|
| [148] |
ZHANG J N, SHI X J, XIE J Y, et al. GaAN: Gated attention networks for learning on large and spatio-temporal graphs[C]//AUAI. Conference on Uncertainty in Artificial Intelligence. Berkeley: AUAI, 2018: 339-349.
|
| [149] |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. doi: 10.1145/3065386
|
| [150] |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//IEEE. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2016: 770-778.
|
| [151] |
SAMI A E H, BRYAN P, AMOL K, et al. MixHop: Higher-order graph convolutional architectures via sparsified neigh-borhood mixing[C]//ACM. International Conference on Machine Learning. New York: ACM, 2019: 21-29.
|
| [152] |
CHEN F W, PAN S R, JIANG J, et al. DAGCN: Dual attention graph convolutional networks[C]//IEEE. 2019 International Joint Conference on Neural Networks (IJCNN). New York: IEEE, 2019: 1-8.
|
| [153] |
HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//IEEE. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2017: 2261-2269.
|
| [154] |
SUN Y F, JIANG X H, HU Y L, et al. Dual dynamic spatial-temporal graph convolution network for traffic prediction[J]. IEEE Transactions on Intelligent Trans-portation Systems, 2022, 23(12): 23680-23693. doi: 10.1109/TITS.2022.3208943
|
| [155] |
SHANG C, CHEN J, BI J B. Discrete graph structure learning for forecasting multiple time series[C]//YOSHUA B, YANN L. International Conference on Learning Repre-sentations. Amherst: OpenReview. net, 2021: 1-14.
|
| [156] |
ZHENG C P, FAN X L, WANG C, et al. GMAN: A graph multi-attention network for traffic prediction[C]//AAAI. Proceedings of the AAAI Conference on Artificial Intel-ligence. Washington DC: AAAI Press, 2020: 1234-1241.
|
| [157] |
ZHANG Z C, LIN X, LI M, et al. A customized deep learning approach to integrate network-scale online traffic data imputation and prediction[J]. Transportation Research Part C: Emerging Technologies, 2021, 132: 103372. doi: 10.1016/j.trc.2021.103372
|
| [158] |
WEN Q S, SUN L, YANG F, et al. Time series data augmentation for deep learning: A survey[C]//AAAI. Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence. Washington DC: AAAI Press, 2021: 1-8.
|
| [159] |
ZHENG X, BAGLOEE S A, SARVI M. TRECK: Long-term traffic forecasting with contrastive representation learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(11): 16964-16977. doi: 10.1109/TITS.2024.3421328
|
| [160] |
WANG X, AL-BASHABSHEH A, ZHAO C, et al. Smoothed noise contrastive mutual information neural estimation[J]. Journal of the Franklin Institute, 2023, 360(16): 12415-12435. doi: 10.1016/j.jfranklin.2023.08.047
|
| [161] |
LAN Z X, REN Y L, YU H Y, et al. Hi-SCL: Fighting long-tailed challenges in trajectory prediction with hierarchical wave-semantic contrastive learning[J]. Transportation Research Part C: Emerging Technologies, 2024, 165: 104735. doi: 10.1016/j.trc.2024.104735
|
| [162] |
QU Y S, RONG J, LI Z L, et al. ST-A-PGCL: Spatio-temporal adaptive periodical graph contrastive learning for traffic prediction under real scenarios[J]. Knowledge-based Systems, 2023, 272: 110591. doi: 10.1016/j.knosys.2023.110591
|
| [163] |
YOU Y N, CHEN T L, SUI Y D, et al. Graph contrastive learning with augmentations[C]//NeurIPS Foundation. Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2020: 1-12.
|
| [164] |
LIU Wei, JIA Su-ling. Robust traffic flow prediction based on graph contrastive learning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(1): 122-133.
|
| [165] |
JIA R, GAO K, LIU Y, et al. I-CLTP: Integrated contrastive learning with transformer framework for traffic state prediction and network-wide analysis[J]. Transportation Research Part C: Emerging Technologies, 2025, 171: 104979. doi: 10.1016/j.trc.2024.104979
|
| [166] |
JIN Y L, CHEN K, YANG Q. Selective cross-city transfer learning for traffic prediction via source city region re-weighting[C]//ACM. Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2022: 734-741.
|
| [167] |
LAI Pei-yuan, LI Cheng, WANG Zeng-hui, et al. Traffic flow prediction based on graph prompt-finetuning[J]. Journal of Computer Research and Development, 2024, 61(8): 2020-2029.
|
| [168] |
QU Y S, LI Z L, ZHAO X H, et al. Towards real-world traffic prediction and data imputation: A multi-task pretraining and fine-tuning approach[J]. Information Sciences, 2024, 657: 119972. doi: 10.1016/j.ins.2023.119972
|
| [169] |
SHAO Z Z, ZHANG Z, WANG F, et al. Pre-training enhanced spatial-temporal graph neural network for multivariate time series forecasting[C]//ACM. Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2022: 1567-1577.
|
| [170] |
LI C, LIU W, YANG H. Deep causal inference for understanding the impact of meteorological variations on traffic[J]. Transportation Research Part C: Emerging Technologies, 2024, 165: 104744. doi: 10.1016/j.trc.2024.104744
|
| [171] |
LIU J M, LIN H, WANG X D, et al. Reliable trajectory prediction in scene fusion based on spatio-temporal structure causal model[J]. Information Fusion, 2024, 107: 102309. doi: 10.1016/j.inffus.2024.102309
|
| [172] |
HU J J, BAI J, YANG J Y, et al. Crash risk prediction using sparse collision data: Granger causal inference and graph convolutional network approaches[J]. Expert Systems with Applications, 2025, 259: 125315. doi: 10.1016/j.eswa.2024.125315
|
| [173] |
YIN J, LI B. Long-short-term expert attention neural networks for traffic flow prediction[C]//Springer. Advanced Intel-ligent Computing Technology and Applications. Munich: Springer, 2024: 3-14.
|
| [174] |
LI Shu-hao. ST-MoE: A spatio-temporal mixed expert framework for traffic forecasting depolarization[D]. Guangzhou: Guangzhou University, 2023.
|
| [175] |
JIANG W Z, HAN J D, LIU H, et al. Interpretable cascading mixture-of-experts for urban traffic congestion prediction[C]//ACM. Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2024: 5206-5217.
|
| [176] |
GUO S N, LIN Y F, GONG L T, et al. Self-supervised spatial-temporal bottleneck attentive network for efficient long-term traffic forecasting[C]//IEEE. 2023 IEEE 39th International Conference on Data Engineering (ICDE). New York: IEEE, 2023: 1585-1596.
|
| [177] |
ZHANG D R, YAN J N, POLAT K, et al. Multimodal joint prediction of traffic spatial-temporal data with graph sparse attention mechanism and bidirectional temporal convolutional network[J]. Advanced Engineering Informatics, 2024, 62: 102533. doi: 10.1016/j.aei.2024.102533.2022.1096186
|
| [178] |
FENG S F, FENG X X, XU L X, et al. BTD-GTAN: Federated traffic flow prediction with multimodal feature fusion considering anomalies[C]//IEEE. 2024 9th Inter-national Conference on Computer and Communication Systems (ICCCS). New York: IEEE, 2024: 462-467.
|
| [179] |
WANG B, QIN A K, SHAFIEI S, et al. Training physics-informed neural networks via multi-task optimization for traffic density prediction[C]//IEEE. 2023 International Joint Conference on Neural Networks (IJCNN). New York: IEEE, 2023: 1-7.
|
| [180] |
DENG P, ZHAO Y, LIU J T, et al. Spatio-temporal neural structural causal models for bike flow prediction[J]//AAAI. Proceedings of the AAAI Conference on Artificial Intel-ligence. Washington DC: AAAI Press, 2023: 4242-4249.
|
| [181] |
WANG H J, CHEN J Y, PAN T, et al. Easy begun is half done: Spatial-temporal graph modeling with ST-curriculum dropout[C]//AAAI. Proceedings of the AAAI Conference on Artificial Intelligence. Washington DC: AAAI Press, 2023: 4668-4675.
|
| [182] |
GUO H, MEESE C, LI W X, et al. B2SFL: A bi-level blockchained architecture for secure federated learning-based traffic prediction[J]. IEEE Transactions on Services Computing, 2023, 16(6): 4360-4374. doi: 10.1109/TSC.2023.3318990
|
| [183] |
LU B, GAN X Y, ZHANG W N, et al. Spatio-temporal graph few-shot learning with cross-city knowledge transfer[C]//ACM. Proceedings of the 28th ACM SIGKDD Confe-rence on Knowledge Discovery and Data Mining. New York: ACM, 2022: 1162-1172.
|
| [184] |
GUO X S, ZHANG Q M, JIANG J Y, et al. Towards explainable traffic flow prediction with large language models[J]. Communications in Transportation Research, 2024, 4: 100150. doi: 10.1016/j.commtr.2024.100150
|
| [185] |
YUAN Y, DING J T, FENG J, et al. UniST: A prompt-empowered universal model for urban spatio-temporal prediction[C]//ACM. Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2024: 4095-4106.
|
| [186] |
XIAO Jian-li, QIU Xue, ZHANG Yang, et al. Review on large language models in transportation[J]. Journal of Traffic and Transportation Engineering, 2025, 25(1): 8-28. doi: 10.19818/j.cnki.1671-1637.2025.01.002
|
| [187] |
DONG Han-xuan. Research on traffic state prediction method of expressway network under data loss[D]. Nanjing: Southeast University, 2022.
|
| [188] |
ZHAO Yong-mei, DONG Yun-wei. Spatio-temporal traffic data prediction based on low-rank tensor completion[J]. Journal of Traffic and Transportation Engineering, 2024, 24(4): 243-258. doi: 10.19818/j.cnki.1671-1637.2024.04.018
|