Volume 26 Issue 1
Jan.  2026
Turn off MathJax
Article Contents
JIA Xing-li, QU Yuan-hai, ZHU Hao-ran, YANG Hong-zhi, YAO Hui, LI Meng-hui. Research review on STGNN in traffic prediction: From model deconstruction to development path[J]. Journal of Traffic and Transportation Engineering, 2026, 26(1): 46-74. doi: 10.19818/j.cnki.1671-1637.2026.01.003
Citation: JIA Xing-li, QU Yuan-hai, ZHU Hao-ran, YANG Hong-zhi, YAO Hui, LI Meng-hui. Research review on STGNN in traffic prediction: From model deconstruction to development path[J]. Journal of Traffic and Transportation Engineering, 2026, 26(1): 46-74. doi: 10.19818/j.cnki.1671-1637.2026.01.003

Research review on STGNN in traffic prediction: From model deconstruction to development path

doi: 10.19818/j.cnki.1671-1637.2026.01.003
Funds:

National Key R&D Program of China 2020YFC1512003

Science and Technology Project of Shaanxi Department of Transportation 24-41X

Fundamental Research Funds for the Central Universities 300102212203

Technology Innovation Guidance Program of Shaanxi Province (Fund) 2025QCY-KXJ-139

Key R&D Program of Shaanxi Province 2025SF-YBXM-283

More Information
  • Corresponding author: JIA Xing-li, professor, PhD, E-mail: jiaxingli@chd.edu.cn
  • Received Date: 2025-02-10
  • Accepted Date: 2025-06-06
  • Rev Recd Date: 2025-04-19
  • Publish Date: 2026-01-28
  • To clarify the development path of traffic prediction models and to explore future development directions of traffic prediction, a systematic literature analysis approach was adopted, and a technology development direction dominated by spatiotemporal graph neural networks (STGNN) was established. Based on the framework characteristics of STGNNs, a full-process analysis system was constructed, including data preprocessing, static and dynamic graph construction, spatiotemporal feature extraction, and feature fusion. Typical traffic prediction tasks and their corresponding open-source datasets were systematically reviewed. Static graph construction methods based on topological relationships, distance properties, and similarity calculations were summarized, and frontier graph construction technologies were summarized, including direct optimization of dynamic graphs and feature optimization. Current temporal feature modeling methods and spatial feature modeling methods were analyzed from the two dimensions of time and space, and the spatiotemporal feature fusion mechanism was illustrated through two typical cases of Graph WaveNet and DCRNN. For the problems of gradient anomalies and performance degradation in deep network training, general solutions based on information propagation were summarized. The integration paths of emerging technologies were explored, including contrastive learning, pre-training mechanisms, causal reasoning, and mixture-of-experts models with traffic prediction. Analysis results show that applications of STGNNs in traffic prediction have gradually intensified both domestically and internationally, and China ranks first with 1 671 publications in the statistics. Existing studies are mainly focused on improving model memory ability for spatio-temporal features and constructing optimal graph structures, and such optimization schemes have reached a balance between model performance and efficiency. In temporal modeling, a balance between computational efficiency and operational performance is still being explored, while spatial modeling has become the main obstacle to efficiency improvement of existing models. Based on the summary and review of previous studies, future breakthrough directions are expected to be concentrated on the exploration of novel prediction scenarios, improvement of model interpretability, incorporation of real-world physical constraints, innovation of learning strategies, and exploration of industrial-level deployment solutions, so that stronger technical support is provided for intelligent transportation systems.

     

  • loading
  • [1]
    FENG Xiao, CHEN Si-long. An ITS method to decrease motor-vehicle pollution in urban area[J]. Journal of Traffic and Transportation Engineering, 2002, 2(2): 73-77. doi: 10.3321/j.issn:1671-1637.2002.02.018
    [2]
    FENG K R, LIN N. Reconstructing and analyzing the traffic flow during evacuation in Hurricane Irma (2017)[J]. Transportation Research Part D: Transport and Environ-ment, 2021, 94: 102788. doi: 10.1016/j.trd.2021.102788
    [3]
    ZANG Hua, PENG Guo-xiong. A forecast model of queuing length in expressway emergency[J]. Computer and Commu-nications, 2003, 21(3): 10-12.
    [4]
    LARTEY J D. Predicting traffic congestion: A queuing perspective[J]. Open Journal of Modelling and Simulation, 2014, 2(2): 57-66. doi: 10.4236/ojmsi.2014.22008
    [5]
    WANG Yong-quan, CHEN Hua-ling, MAO Wen-xiong. Research on road traffic noise prediction model based on car-following theory[J]. Acta Simulata Systematica Sinica, 2004, 16(11): 2413-2416.
    [6]
    DAGANZO C F. The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory[J]. Transportation Research Part B: Methodological, 1994, 28(4): 269-287. doi: 10.1016/0191-2615(94)90002-7
    [7]
    XU X, ZHANG L L, KONG Q, et al. Enhanced-historical average for long-term prediction[C]//IEEE. 2022 2nd International Conference on Computer, Control and Robotics (ICCCR). New York: IEEE, 2022: 115-119.
    [8]
    HAMED M M, AL-MASAEID H R, SAID Z M B. Short-term prediction of traffic volume in urban arterials[J]. Journal of Transportation Engineering, 1995, 121(3): 249-254. doi: 10.1061/(ASCE)0733-947X(1995)121:3(249)
    [9]
    SHAHRIARI S, GHASRI M, SISSON S A, et al. Ensemble of ARIMA: Combining parametric and bootstrapping technique for traffic flow prediction[J]. Transportmetrica A: Transport Science, 2020, 16(3): 1552-1573. doi: 10.1080/23249935.2020.1764662
    [10]
    CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273-297. doi: 10.1023/A:1022627411411
    [11]
    BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32. doi: 10.1023/A:1010933404324
    [12]
    COVER T, HART P. Nearest neighbor pattern classification[J]. IEEE Transactions on Information Theory, 1967, 13(1): 21-27. doi: 10.1109/TIT.1967.1053964
    [13]
    WU C H, HO J M, LEE D T. Travel-time prediction with support vector regression[J]. IEEE Transactions on Intelligent Transportation Systems, 2004, 5(4): 276-281. doi: 10.1109/TITS.2004.837813
    [14]
    RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323: 533-536. doi: 10.1038/323533a0
    [15]
    BAO X X, JIANG D, YANG X F, et al. An improved deep belief network for traffic prediction considering weather factors[J]. Alexandria Engineering Journal, 2021, 60(1): 413-420. doi: 10.1016/j.aej.2020.09.003
    [16]
    ZHANG W B, YU Y H, QI Y, et al. Short-term traffic flow prediction based on spatio-temporal analysis and CNN deep learning[J]. Transportmetrica A: Transport Science, 2019, 15(2): 1688-1711. doi: 10.1080/23249935.2019.1637966
    [17]
    WILLIAMS R J, ZIPSER D. A learning algorithm for continually running fully recurrent neural networks[J]. Neural Computation, 1989, 1(2): 270-280. doi: 10.1162/neco.1989.1.2.270
    [18]
    HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. doi: 10.1162/neco.1997.9.8.1735
    [19]
    CHO K, VAN MERRIENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]//ACL. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Doha: ACL, 2014: 1724-1734.
    [20]
    ASHISH V, NOAM S, NIKI P, et al. Attention is all you need[C]//NeurIPS Foundation. Conference on Neural Infor-mation Processing Systems. Cambridge: MIT Press, 2017: 6000-6010.
    [21]
    MA Fei, YANG Zhi-jie, WANG Jiang-bo, et al. Short-term traffic flow speed prediction model based on meteorological-traffic multi-channel data fusion[J]. Journal of Traffic and Transportation Engineering, 2024, 24(6): 183-196. doi: 10.19818/j.cnki.1671-1637.2024.06.013
    [22]
    HU Li-wei, HOU Zhi, ZHAO Xue-ting, et al. Research on improvement of highway traffic risk prediction model based on traffic accident text mining[J/OL]. Journal of Southwest Jiaotong University, 2025, http://kns.cnki.net/kcms/detail/51.1277.U.20240509.1523.010.html.
    [23]
    MA C X, ZHAO Y P, DAI G W, et al. A novel STFSA-CNN-GRU hybrid model for short-term traffic speed prediction[J]. IEEE Transactions on Intelligent Trans-portation Systems, 2023, 24(4): 3728-3737. doi: 10.1109/TITS.2021.3117835
    [24]
    BEECHE C, SINGH J P, LEADER J K, et al. Super U-Net: A modularized generalizable architecture[J]. Pattern Recog-nition, 2022, 128: 108669. doi: 10.1016/j.patcog.2022.108669
    [25]
    ZHANG Z B, WU S, JIANG D W, et al. BERT-JAM: Maximizing the utilization of BERT for neural machine translation[J]. Neurocomputing, 2021, 460: 84-94. doi: 10.1016/j.neucom.2021.07.002
    [26]
    YANG Guo-liang, XI Hao, GONG Jia-ren, et al. Short term traffic flow forecasting based on transformer[J]. Computer Applications and Software, 2024, 41(3): 169-173, 225.
    [27]
    LI Y G, YU R, CYRUS S, et al. Diffusion convolutional recurrent neural network: Data-driven traffic forecasting[C]//YOSHUA B, YANN L. International Conference on Learning Representations. Portland: OpenReview. net, 2018: 1-16.
    [28]
    DONG Z, JIANG R H, GAO H T, et al. Heterogeneity-informed meta-parameter learning for spatiotemporal time series forecasting[C]//ACM. Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2024: 631-641.
    [29]
    LI H, LIU J, HAN S Y, et al. STFGCN: Spatial-temporal fusion graph convolutional network for traffic prediction[J]. Expert Systems with Applications, 2024, 255: 124648. doi: 10.1016/j.eswa.2024.124648
    [30]
    WANG S Z, CAO J N, YU P S. Deep learning for spatio-temporal data mining: A survey[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(8): 3681-3700. doi: 10.1109/TKDE.2020.3025580
    [31]
    CUI Jian-xun, YAO Jia, ZHAO Bo-yuan. Review on short-term traffic flow prediction methods based on deep learning[J]. Journal of Traffic and Transportation Engineering, 2024, 24(2): 50-64. doi: 10.19818/j.cnki.1671-1637.2024.02.003
    [32]
    ZOU Hui-qi, SHI Bin-ze, SONG Ling-yun, et al. Survey on complex spatio-temporal data mining methods based on graph neural networks[J]. Journal of Software, 2025, 36(4): 1811-1843.
    [33]
    HU Zuo-an, DENG Jin-cheng, HAN Jin-li, et al. Review on application of graph neural network in traffic prediction[J]. Journal of Traffic and Transportation Engineering, 2023, 23(5): 39-61. doi: 10.19818/j.cnki.1671-1637.2023.05.003
    [34]
    XIONG Zhang-you, LI Wei-jun, ZHU Xiao-juan, et al. Short-term traffic flow prediction based on deep learning[J]. Computer Engineering and Applications, 2025, 61(11): 67-82.
    [35]
    LIU M Z, ZHU T Y, YE J C, et al. Spatio-temporal autoencoder for traffic flow prediction[J]. IEEE Transac-tions on Intelligent Transportation Systems, 2023, 24(5): 5516-5526. doi: 10.1109/TITS.2023.3243913
    [36]
    ABDELRAOUF A, ABDEL-ATY M, YUAN J H. Utilizing attention-based multi-encoder-decoder neural networks for freeway traffic speed prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(8): 11960-11969. doi: 10.1109/TITS.2021.3108939
    [37]
    WU X L, ZHANG D L, GUO C J, et al. AutoCTS: Automated correlated time series forecasting[J]. Proceedings of the VLDB Endowment, 2022, 15(4): 971-983.
    [38]
    ZOU G J, LAI Z L, MA C X, et al. When will we arrive a novel multi-task spatio-temporal attention network based on individual preference for estimating travel time[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(10): 11438-11452. doi: 10.1109/TITS.2023.3276916
    [39]
    WANG B B, LIN Y F, GUO S N, et al. GSNet: Learning spatial-temporal correlations from geographical and semantic aspects for traffic accident risk forecasting[C]//AAAI. Proceedings of the AAAI Conference on Artificial Intel-ligence. Washington DC: AAAI Press, 2021: 4402-4409.
    [40]
    WANG Z N, JIANG R H, XUE H, et al. Event-aware multimodal mobility nowcasting[C]//AAAI. Proceedings of the AAAI Conference on Artificial Intelligence. Washington DC: AAAI Press, 2022: 4228-4236.
    [41]
    JIA Xing-li, LI Shuang-qing, YANG Hong-zhi, et al. Prediction of the duration of freeway traffic incidents based on an ATT-LSTM model[J]. Journal of Transport Information and Safe, 2022, 40(5): 61-69.
    [42]
    YE J C, SUN L L, DU B W, et al. Coupled layer-wise graph convolution for transportation demand prediction[C]//AAAI. Proceedings of the AAAI Conference on Artificial Intelligence. Washington DC: AAAI Press, 2021: 4616-4625.
    [43]
    WANG S Y, ZHUGE C X, SHAO C F, et al. Short-term electric vehicle charging demand prediction: A deep learning approach[J]. Applied Energy, 2023, 340: 121032. doi: 10.1016/j.apenergy.2023.121032
    [44]
    LIANG Y B, DING F Y, HUANG G, et al. Deep trip generation with graph neural networks for bike sharing system expansion[J]. Transportation Research Part C: Emerging Technologies, 2023, 154: 104241. doi: 10.1016/j.trc.2023.104241
    [45]
    HUANG Y J, DU J T, YANG Z R, et al. A survey on trajectory-prediction methods for autonomous driving[J]. IEEE Transactions on Intelligent Vehicles, 2022, 7(3): 652-674. doi: 10.1109/TIV.2022.3167103
    [46]
    CHEN G X, HU L, ZHANG Q S, et al. ST-LSTM: Spatio-temporal graph based long short-term memory network for vehicle trajectory prediction[C]//IEEE. 2020 IEEE Inter-national Conference on Image Processing (ICIP). New York: IEEE, 2020: 608-612.
    [47]
    LI F X, YAN H, JIN G Y, et al. Automated spatio-temporal synchronous modeling with multiple graphs for traffic prediction[C]//ACM. Proceedings of the 31st ACM Inter-national Conference on Information & Knowledge Manage-ment. New York: ACM, 2022: 1084-1093.
    [48]
    WU Z H, PAN S R, LONG G D, et al. Connecting the dots: Multivariate time series forecasting with graph neural networks[C]//ACM. Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2020: 753-763.
    [49]
    FANG Z, LONG Q Q, SONG G J, et al. Spatial-temporal graph ODE networks for traffic flow forecasting[C]//ACM. Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. New York: ACM, 2021: 364-373.
    [50]
    SONG C, LIN Y F, GUO S N, et al. Spatial-temporal synchronous graph convolutional networks: A new frame-work for spatial-temporal network data forecasting[C]//AAAI. Proceedings of the AAAI Conference on Artificial Intelligence. Washington DC: AAAI Press, 2020: 914-921.
    [51]
    CHEN Y Z, DOMINGUEZ I S, GEL Y R. Z-GCNETs: Time zigzags at graph convolutional networks for time series forecasting[C]//ACM. International Conference on Machine Learning. New York: ACM, 2021: 1684-1694.
    [52]
    GUO S N, LIN Y F, FENG N, et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting[C]//AAAI. Proceedings of the AAAI Confe-rence on Artificial Intelligence. Washington DC: AAAI Press, 2019: 922-929.
    [53]
    YU B, YIN H T, ZHU Z X. Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting[C]//AAAI. Proceedings of the 27th International Joint Conference on Artificial Intelligence. Washington DC: AAAI Press, 2018: 3634-3640.
    [54]
    ZHAO Wen-zhu, YUAN Guan, ZHANG Yan-mei, et al. Multi-view fused spatial-temporal dynamic GCN for urban traffic flow prediction[J]. Journal of Software, 2024, 35(4): 1751-1773.
    [55]
    CAO D F, WANG Y J, DUAN J Y, et al. Spectral temporal graph neural network for multivariate time-series forecasting[C]//NeurIPS Foundation. Conference on Neural Infor-mation Processing Systems. Cambridge: MIT Press, 2020: 17766-17778.
    [56]
    WU Z H, PAN S R, LONG G D, et al. Graph WaveNet for deep spatial-temporal graph modeling[C]//AAAI. Proceedings of the 28th International Joint Conference on Artificial Intelligence. Washington DC: AAAI Press, 2019: 1907-1913.
    [57]
    LAI Z C, ZHANG D L, LI H, et al. LightCTS*: Light-weight correlated time series forecasting enhanced with model distillation[J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36(12): 8695-8710. doi: 10.1109/TKDE.2024.3424451
    [58]
    JIANG R H, WANG Z N, YONG J W, et al. Spatio-temporal meta-graph learning for traffic forecasting[C]//AAAI. Proceedings of the AAAI Conference on Artificial Intelligence. Washington DC: AAAI Press, 2023: 8078-8086.
    [59]
    LEE H, KO S. TESTAM: A time-enhanced spatio-temporal attention model with mixture of experts[C]//YOSHUA B, YANN L. International Conference on Learning Represen-tations. Portland: OpenReview. net, 2024: 1-19.
    [60]
    LIU D C, WANG J, SHANG S, et al. MSDR: Multi-step dependency relation networks for spatial temporal forecasting[C]//ACM. Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2022: 1042-1050.
    [61]
    ZHANG J B, ZHENG Y, QI D K. Deep spatio-temporal residual networks for citywide crowd flows prediction[C]//AAAI. AAAI Conference on Artificial Intelligence. Washington DC: AAAI Press, 2017: 1-7.
    [62]
    LI X Y, XU Y, CHEN Q, et al. Short-term forecast of bicycle usage in bike sharing systems: A spatial-temporal memory network[J]. IEEE Transactions on Intelligent Trans-portation Systems, 2022, 23(8): 10923-10934. doi: 10.1109/TITS.2021.3097240
    [63]
    ZHOU Z Y, WANG Y, XIE X K, et al. RiskOracle: A minute-level citywide traffic accident forecasting framework[C]//AAAI. Proceedings of the AAAI Conference on Artificial Intelligence. Washington DC: AAAI Press, 2020: 1258-1265.
    [64]
    JIN G Y, WANG M, ZHANG J L, et al. STGNN-TTE: Travel time estimation via spatial-temporal graph neural network[J]. Future Generation Computer Systems, 2022, 126: 70-81. doi: 10.1016/j.future.2021.07.012
    [65]
    JIANG J W, PAN D Y, REN H X, et al. Self-supervised trajectory representation learning with temporal regularities and travel semantics[C]//IEEE. 2023 IEEE 39th Inter-national Conference on Data Engineering (ICDE). New York: IEEE, 2023: 843-855.
    [66]
    YUAN J, ZHENG Y, XIE X, et al. Driving with knowledge from the physical world[C]//ACM. Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2011: 316-324.
    [67]
    YUAN J, ZHENG Y, ZHANG C Y, et al. T-drive: Driving directions based on taxi trajectories[C]//ACM. Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York: ACM, 2010: 99-108.
    [68]
    YAN B Q, ZHAO G, SONG L X, et al. PreCLN: Pretrained-based contrastive learning network for vehicle trajectory prediction[J]. World Wide Web, 2023, 26(4): 1853-1875. doi: 10.1007/s11280-022-01121-3
    [69]
    LIAO H C, LI X L, LI Y K, et al. Characterized diffusion and spatial-temporal interaction network for trajectory prediction in autonomous driving[C]//AAAI. International Joint Conference on Artificial Intelligence. Washington DC: AAAI Press, 2024: 1-9.
    [70]
    CHEN X B, ZHANG H J, ZHAO F, et al. Intention-aware vehicle trajectory prediction based on spatial-temporal dynamic attention network for Internet of vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10): 19471-19483. doi: 10.1109/TITS.2022.3170551
    [71]
    KRAJEWSKI R, BOCK J, KLOEKER L, et al. The highD dataset: A drone dataset of naturalistic vehicle trajectories on German highways for validation of highly automated driving systems[C]//IEEE. 2018 21st International Conference on Intelligent Transportation Systems (ITSC). New York: IEEE, 2018: 2118-2125.
    [72]
    CHANG M-F, LAMBERT J, SANGKLOY P, et al. Argoverse: 3D tracking and forecasting with rich maps[C]//IEEE. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2019: 8740-8749.
    [73]
    LIANG M, YANG B, HU R, et al. Learning lane graph representations for motion forecasting[C]//Springer. Proceedings of 16th European Conference on Computer Vision (ECCV). Munich: Springer, 2020: 541-556.
    [74]
    YUAN Jing, XIA Ying. Vehicle trajectory prediction based on spatial-temporal graph attention convolutional network[J]. Computer Science, 2024, 51(12): 157-165.
    [75]
    CHANG Y C, QI J Z, LIANG Y X, et al. Contrastive trajectory similarity learning with dual-feature attention[C]//IEEE. 2023 IEEE 39th International Conference on Data Engineering (ICDE). New York: IEEE, 2023: 2933-2945.
    [76]
    FU Xiang-jun. Research on traffic forecasting of related sections based on topological structure of road network[D]. Chongqing: Chongqing Jiaotong University, 2020.
    [77]
    WEN Zhen-guo. Study on structural characteristics and robustness of Shaanxi expressway network based on complex network theory[D]. Xi'an: Chang'an University, 2019.
    [78]
    CHEN Xi, QIAN Jiang-hai, HAN Ding-ding. Tree network under space L and space P model[J]. Application Research of Computers, 2015, 32 (1): 45-47.
    [79]
    WANG X Y, MA Y, WANG Y Q, et al. Traffic flow prediction via spatial temporal graph neural network[C]//ACM. Proceedings of The Web Conference 2020. New York: ACM, 2020: 1082-1092.
    [80]
    GAO A, ZHENG L J, WANG Z X, et al. Attention based short-term metro passenger flow prediction[M]. Munich: Springer International Publishing, 2021.
    [81]
    GUO K, HU Y L, QIAN Z, et al. Optimized graph convolution recurrent neural network for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(2): 1138-1149. doi: 10.1109/TITS.2019.2963722
    [82]
    SUN Jun, PAN Yu-jun, HE Rui-fang, et al. The enligh-tenment of geographical theories construction from the first law of geography and its debates[J]. Geographical Research, 2012, 31(10): 1749-1763.
    [83]
    TAN Hui-sheng, YANG Wei, YAN Shu-qi. Research on spatio-temporal graph convolutional network for traffic speed prediction and their FPGA implementation[J]. Electronic Measurement Technology, 2024, 47(18): 108-119.
    [84]
    ZHAO L, SONG Y J, ZHANG C, et al. T-GCN: A temporal graph convolutional network for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(9): 3848-3858. doi: 10.1109/TITS.2019.2935152
    [85]
    QI Duo, MAO Zheng-yuan. Short-term traffic flow predic-tion based on adaptive time slice and KNN[J]. Journal of Geo-information Science, 2022, 24(2): 339-351.
    [86]
    LV M Q, HONG Z X, CHEN L, et al. Temporal multi-graph convolutional network for traffic flow prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(6): 3337-3348. doi: 10.1109/TITS.2020.2983763
    [87]
    LI P, WANG S, ZHAO H T, et al. IG-net: An interaction graph network model for metro passenger flow forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(4): 4147-4157. doi: 10.1109/TITS.2023.3235805
    [88]
    XU G, LI Y G, WANG L Y, et al. Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting[C]//AAAI. Proceedings of the AAAI Conference on Artificial Intelligence. Washington DC: AAAI Press, 2019: 3656-3663.
    [89]
    LIU L B, CHEN J W, WU H F, et al. Physical-virtual collaboration modeling for intra- and inter-station metro ridership prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(4): 3377-3391. doi: 10.1109/TITS.2020.3036057
    [90]
    BAO Yin-xin, CAO Yang, SHI Quan. Improved spatio-temporal residual convolutional neural network for urban road network short-term traffic flow prediction[J]. Journal of Computer Applications, 2022, 42(1): 258-264.
    [91]
    CHAI D, WANG L Y, YANG Q. Bike flow prediction with multi-graph convolutional networks[C]//ACM. Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York: ACM, 2018: 397-400.
    [92]
    PU Wen-wen. Research on trajectory prediction algorithm of multi-class traffic participants[D]. Changsha: Hunan University, 2021.
    [93]
    SHAO W, JIN Z L, WANG S, et al. Long-term spatio-temporal forecasting via dynamic multiple-graph attention[C]//AAAI. Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence. Washington DC: AAAI Press, 2022: 1-8.
    [94]
    LIU R W, LIANG M H, NIE J T, et al. STMGCN: Mobile edge computing-empowered vessel trajectory prediction using spatio-temporal multigraph convolutional network[J]. IEEE Transactions on Industrial Informatics, 2022, 18(11): 7977-7987. doi: 10.1109/TII.2022.3165886
    [95]
    LUO X L, ZHU C J, ZHANG D T, et al. Dynamic graph convolutional network with attention fusion for traffic flow prediction[C]//Springer. Proceedings of 26th European Conference on Artificial Intelligence (ECAI). Munich: Springer, 2023: 1-8.
    [96]
    MA Y, LOU H J, YAN M, et al. Spatio-temporal fusion graph convolutional network for traffic flow forecasting[J]. Information Fusion, 2024, 104: 102196. doi: 10.1016/j.inffus.2023.102196
    [97]
    ZHANG W, ZHU F H, LV Y S, et al. AdapGL: An adaptive graph learning algorithm for traffic prediction based on spatiotemporal neural networks[J]. Transportation Research Part C: Emerging Technologies, 2022, 139: 103659. doi: 10.1016/j.trc.2022.103659
    [98]
    QU Y H, JIA X L, GUO J H, et al. MSSTGNN: Multi-scaled spatio-temporal graph neural networks for short- and long-term traffic prediction[J]. Knowledge-based Systems, 2024, 306: 112716. doi: 10.1016/j.knosys.2024.112716
    [99]
    CHAUHAN V K, ZHOU J D, LU P, et al. A brief review of hypernetworks in deep learning[J]. Artificial Intelligence Review, 2024, 57(9): 250. doi: 10.1007/s10462-024-10862-8
    [100]
    PENG Y F, GUO Y Y, HAO R, et al. Network traffic prediction with attention-based spatial-temporal graph network[J]. Computer Networks, 2024, 243: 110296. doi: 10.1016/j.comnet.2024.110296
    [101]
    SHIN Y, YOON Y. PGCN: Progressive graph convolutional networks for spatial-temporal traffic forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(7): 7633-7644. doi: 10.1109/TITS.2024.3349565
    [102]
    JIN G Y, LIU C X, XI Z X, et al. Adaptive dual-view WaveNet for urban spatial-temporal event prediction[J]. Information Sciences, 2022, 588: 315-330. doi: 10.1016/j.ins.2021.12.085
    [103]
    WU Yong-qing, JIANG Zheng-yu. Traffic flow prediction based on decoupled dynamic spatial-temporal convolutional recurrent network [J/OL]. Computer Engineering, 2025, DOI: 10.19678/j.issn.1000-3428.0070319.
    [104]
    TA X X, LIU Z H, HU X, et al. Adaptive spatio-temporal graph neural network for traffic forecasting[J]. Knowledge-Based Systems, 2022, 242: 108199. doi: 10.1016/j.knosys.2022.108199
    [105]
    LV Z Q, WANG X T, CHENG Z S, et al. ST-TDCN: A two-channel tree-structure spatial-temporal convolutional network model for traffic velocity prediction[J]. Expert Systems with Applications, 2024, 257: 125053. doi: 10.1016/j.eswa.2024.125053
    [106]
    WANG F, SUN J M. Survey on distance metric learning and dimensionality reduction in data mining[J]. Data Mining and Knowledge Discovery, 2015, 29(2): 534-564. doi: 10.1007/s10618-014-0356-z
    [107]
    WOJKE N, BEWLEY A. Deep cosine metric learning for person re-identification[C]//IEEE. 2018 IEEE Winter Conference on Applications of Computer Vision (WACV). New York: IEEE, 2018: 748-756.
    [108]
    CHEN Y, WU L F, ZAKI M J. Iterative deep graph learning for graph neural networks: Better and robust node embeddings[C]//NeurIPS Foundation. Proceedings of 34th Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2020: 19314-19326.
    [109]
    LI R Y, WANG S, ZHU F Y, et al. Adaptive graph convolutional neural networks[C]//AAAI. Proceedings of the AAAI Conference on Artificial Intelligence. Washington DC: AAAI Press, 2018: 3546-3553.
    [110]
    LIU H Y, YANG D H, LIU X Z, et al. TodyNet: Temporal dynamic graph neural network for multivariate time series classification[J]. Information Sciences, 2024, 677: 120914. doi: 10.1016/j.ins.2024.120914
    [111]
    LUCA F, MATHIAS N, MASSIMILIANO P, et al. Learning discrete structures for graph neural networks[C]//ACM. Proceedings of 36th International Conference on Machine Learning. New York: ACM, 2019: 1972-1982.
    [112]
    ZHENG C, ZONG B, CHENG W, et al. Robust graph representation learning via neural sparsification[C]//ACM. Proceedings of 37th International Conference on Machine Learning. New York: ACM, 2020: 11458-11468.
    [113]
    JIN G Y, LIANG Y X, FANG Y C, et al. Spatio-temporal graph neural networks for predictive learning in urban computing: A survey[J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36(10): 5388-5408. doi: 10.1109/TKDE.2023.3333824
    [114]
    GUO K, HU Y L, SUN Y F, et al. Hierarchical graph convolution network for traffic forecasting[C]//AAAI. Proceedings of the AAAI Conference on Artificial Intel-ligence. Washington DC: AAAI Press, 2021: 151-159.
    [115]
    AGARWAL S, SAWHNEY R, THAKKAR M, et al. THINK: Temporal hypergraph hyperbolic network[C]//IEEE. 2022 IEEE International Conference on Data Mining (ICDM). New York: IEEE, 2022: 849-854.
    [116]
    HOU Yue, ZHANG Xin, XI Zhu-tao, et al. Spatio-temporal heterogeneous traffic flow prediction under special road network topology deconstruction[J/OL]. Journal of Railway Science and Engineering, 2025, 22(7): 2932-2945.
    [117]
    WANG J C, ZHANG Y, WEI Y, et al. Metro passenger flow prediction via dynamic hypergraph convolution networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(12): 7891-7903. doi: 10.1109/TITS.2021.3072743
    [118]
    ZHAO Y S, LUO X, JU W, et al. Dynamic hypergraph structure learning for traffic flow forecasting[C]//IEEE. 2023 IEEE 39th International Conference on Data Engi-neering (ICDE). New York: IEEE, 2023: 2303-2316.
    [119]
    SCHUSTER M, PALIWAL K K. Bidirectional recurrent neural networks[J]. IEEE Transactions on Signal Processing, 1997, 45(11): 2673-2681. doi: 10.1109/78.650093
    [120]
    LEA C, VIDAL R, REITER A, et al. Temporal convolutional networks: A unified approach to action segmentation[C]//Springer. Proceedings of 12th European Conference on Computer Vision (ECCV). Munich: Springer, 2016: 47-54.
    [121]
    ZHANG X Y, JIN X Y, GOPALSWAMY K, et al. First de-trend then attend: Rethinking attention for time-series forecasting[C]//NeurIPS Foundation. Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2022: 1-11.
    [122]
    ZHOU T, MA Z Q, WEN Q S, et al. FEDformer: Frequency enhanced decomposed transformer for long-term series forecasting[C]//ACM. International Conference on Machine Learning. New York: ACM, 2022: 27268-27286.
    [123]
    ZHOU H Y, ZHANG S H, PENG J Q, et al. Informer: Beyond efficient transformer for long sequence time-series forecasting[C]//AAAI. Proceedings of the AAAI Confe-rence on Artificial Intelligence. Washington DC: AAAI Press, 2021: 11106-11115.
    [124]
    LIU Y, TU T G, ZHANG H R, et al. Transformer: Inverted transformers are effective for time series forecasting[C]//YOSHUA B, YANN L. International Conference on Learning Representations. Portland: OpenReview. net, 2024: 1-25.
    [125]
    LIU Y M, WU X, TANG Y, et al. Decomposition with feature attention and graph convolution network for traffic forecasting[J]. Knowledge-based Systems, 2024, 300: 112193. doi: 10.1016/j.knosys.2024.112193
    [126]
    ZHOU H Y, ZHANG S H, PENG J Q, et al. Informer: Beyond efficient transformer for long sequence time-series forecasting[C]//AAAI. Proceedings of the AAAI Confe-rence on Artificial Intelligence. Washington DC: AAAI, 2021: 11106-11115.
    [127]
    LIU H C, DONG Z, JIANG R H, et al. Spatio-temporal adaptive embedding makes vanilla transformer SOTA for traffic forecasting[C]//ACM. Proceedings of the 32nd ACM International Conference on Information and Knowledge Management. New York: ACM, 2023: 4125-4129.
    [128]
    DAUPHIN Y N, FAN A, AULI M, et al. Language modeling with gated convolution networks[C]//ACM. International Conference on Machine Learning. New York: ACM, 2017: 933-941.
    [129]
    LIU Z M, WANG Y X, VAIDYA S, et al. KAN: Kolmogorov-arnold network[C]//YUE Y. International Conference on Learning Representations. Amherst: OpenReview. net, 2025: 1-50.
    [130]
    GAO Y, HU Z H, CHEN W A, et al. A revolutionary neural network architecture with interpretability and flexibility based on Kolmogorov-Arnold for solar radiation and temperature forecasting[J]. Applied Energy, 2025, 378: 124844. doi: 10.1016/j.apenergy.2024.124844
    [131]
    LIVIERIS I E. C-KAN: A new approach for integrating convolutional layers with Kolmogorov-Arnold networks for time-series forecasting[J]. Mathematics, 2024, 12(19): 3022. doi: 10.3390/math12193022
    [132]
    LIU X F, YANG Z L, GUO Y J, et al. A novel correlation feature self-assigned Kolmogorov-Arnold networks for multi-energy load forecasting in integrated energy systems[J]. Energy Conversion and Management, 2025, 325: 119388. doi: 10.1016/j.enconman.2024.119388
    [133]
    GU A, DAO T. Mamba: Linear-time sequence modeling with selective state spaces[C]//YEJIN C, DANNY Z. Proceedings of 1st Conference on Language Modeling. Amherst: Open-Review. net, 2024: 1-36.
    [134]
    LIN W X, ZHANG Z, REN G, et al. MGCN: Mamba-integrated spatiotemporal graph convolutional network for long-term traffic forecasting[J]. Knowledge-based Systems, 2025, 309: 112875. doi: 10.1016/j.knosys.2024.112875
    [135]
    MEHRABIAN A, WONG V W S. A-gamba: An adaptive graph-mamba model for traffic prediction in wireless cellular networks[J]. IEEE Wireless Communications Letters, 2025, 14(6): 1801-1805. doi: 10.1109/LWC.2025.3557313
    [136]
    SHAO Z Q, WANG Z, YAO X S, et al. ST-MambaSync: Complement the power of Mamba and Transformer fusion for less computational cost in spatial-temporal traffic forecasting[J]. Information Fusion, 2025, 117: 102872. doi: 10.1016/j.inffus.2024.102872
    [137]
    ZHOU J, CUI G Q, HU S D, et al. Graph neural networks: A review of methods and applications[J]. AI Open, 2020, 1: 57-81. doi: 10.1016/j.aiopen.2021.01.001
    [138]
    XIANG Yi, FENG Qiang. Weighted convolution of the Fourier sine-cosine transform and its application[J]. Journal of Zhejiang University (Science Edition), 2023, 50(3): 266-272.
    [139]
    HAMMOND D K, VANDERGHEYNST P, GRIBONVAL R. Wavelets on graphs via spectral graph theory[J]. Applied and Computational Harmonic Analysis, 2011, 30(2): 129-150. doi: 10.1016/j.acha.2010.04.005
    [140]
    HE M G, WEI Z W, HUANG Z F, et al. BernNet: Learning arbitrary graph spectral filters via Bernstein approximation[C]//NeurIPS Foundation. Conference on Neural Infor-mation Processing Systems. Cambridge: MIT Press, 2021: 1-16.
    [141]
    CHIEN E L, PENG J H, LI P, et al. Adaptive universal generalized PageRank graph neural network[C]//YOSHUA B, YANN L. International Conference on Learning Repre-sentations. Amherst: OpenReview. net, 2021: 1-24.
    [142]
    KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[C]// YOSHUA B, YANN L. International Conference on Learning Representations. Amherst: OpenReview. net, 2017: 1-14.
    [143]
    GILMER J, SCHOENHOLZ S S, RILEY P F, et al. Neural message passing for quantum chemistry[C]//ACM. International Conference on Machine Learning. New York: ACM, 2017: 1263-1272.
    [144]
    HAMILTON W L, YING R, LESKOVEC J. Inductive representation learning on large graphs[C]//NeurIPS Foundation. Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2017: 1025-1035.
    [145]
    LOUIS-PASCAL A C X, QU M, TANG J. Continuous graph neural networks[C]//ACM. International Conference on Machine Learning. New York: ACM, 2020: 1-15.
    [146]
    KIPF T N, WELLING M. Variational graph auto-encoders[C]//NeurIPS Foundation. Conference on Neural Infor-mation Processing Systems. Cambridge: MIT Press, 2016: 1-3.
    [147]
    VELICKOVIC P, CUCURULL G, CASANOVA A, et al. Graph attention networks[C]//YOSHUA B, YANN L. International Conference on Learning Representations. Amherst: OpenReview. net, 2018: 1-12.
    [148]
    ZHANG J N, SHI X J, XIE J Y, et al. GaAN: Gated attention networks for learning on large and spatio-temporal graphs[C]//AUAI. Conference on Uncertainty in Artificial Intelligence. Berkeley: AUAI, 2018: 339-349.
    [149]
    KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. doi: 10.1145/3065386
    [150]
    HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//IEEE. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2016: 770-778.
    [151]
    SAMI A E H, BRYAN P, AMOL K, et al. MixHop: Higher-order graph convolutional architectures via sparsified neigh-borhood mixing[C]//ACM. International Conference on Machine Learning. New York: ACM, 2019: 21-29.
    [152]
    CHEN F W, PAN S R, JIANG J, et al. DAGCN: Dual attention graph convolutional networks[C]//IEEE. 2019 International Joint Conference on Neural Networks (IJCNN). New York: IEEE, 2019: 1-8.
    [153]
    HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//IEEE. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2017: 2261-2269.
    [154]
    SUN Y F, JIANG X H, HU Y L, et al. Dual dynamic spatial-temporal graph convolution network for traffic prediction[J]. IEEE Transactions on Intelligent Trans-portation Systems, 2022, 23(12): 23680-23693. doi: 10.1109/TITS.2022.3208943
    [155]
    SHANG C, CHEN J, BI J B. Discrete graph structure learning for forecasting multiple time series[C]//YOSHUA B, YANN L. International Conference on Learning Repre-sentations. Amherst: OpenReview. net, 2021: 1-14.
    [156]
    ZHENG C P, FAN X L, WANG C, et al. GMAN: A graph multi-attention network for traffic prediction[C]//AAAI. Proceedings of the AAAI Conference on Artificial Intel-ligence. Washington DC: AAAI Press, 2020: 1234-1241.
    [157]
    ZHANG Z C, LIN X, LI M, et al. A customized deep learning approach to integrate network-scale online traffic data imputation and prediction[J]. Transportation Research Part C: Emerging Technologies, 2021, 132: 103372. doi: 10.1016/j.trc.2021.103372
    [158]
    WEN Q S, SUN L, YANG F, et al. Time series data augmentation for deep learning: A survey[C]//AAAI. Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence. Washington DC: AAAI Press, 2021: 1-8.
    [159]
    ZHENG X, BAGLOEE S A, SARVI M. TRECK: Long-term traffic forecasting with contrastive representation learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(11): 16964-16977. doi: 10.1109/TITS.2024.3421328
    [160]
    WANG X, AL-BASHABSHEH A, ZHAO C, et al. Smoothed noise contrastive mutual information neural estimation[J]. Journal of the Franklin Institute, 2023, 360(16): 12415-12435. doi: 10.1016/j.jfranklin.2023.08.047
    [161]
    LAN Z X, REN Y L, YU H Y, et al. Hi-SCL: Fighting long-tailed challenges in trajectory prediction with hierarchical wave-semantic contrastive learning[J]. Transportation Research Part C: Emerging Technologies, 2024, 165: 104735. doi: 10.1016/j.trc.2024.104735
    [162]
    QU Y S, RONG J, LI Z L, et al. ST-A-PGCL: Spatio-temporal adaptive periodical graph contrastive learning for traffic prediction under real scenarios[J]. Knowledge-based Systems, 2023, 272: 110591. doi: 10.1016/j.knosys.2023.110591
    [163]
    YOU Y N, CHEN T L, SUI Y D, et al. Graph contrastive learning with augmentations[C]//NeurIPS Foundation. Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2020: 1-12.
    [164]
    LIU Wei, JIA Su-ling. Robust traffic flow prediction based on graph contrastive learning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(1): 122-133.
    [165]
    JIA R, GAO K, LIU Y, et al. I-CLTP: Integrated contrastive learning with transformer framework for traffic state prediction and network-wide analysis[J]. Transportation Research Part C: Emerging Technologies, 2025, 171: 104979. doi: 10.1016/j.trc.2024.104979
    [166]
    JIN Y L, CHEN K, YANG Q. Selective cross-city transfer learning for traffic prediction via source city region re-weighting[C]//ACM. Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2022: 734-741.
    [167]
    LAI Pei-yuan, LI Cheng, WANG Zeng-hui, et al. Traffic flow prediction based on graph prompt-finetuning[J]. Journal of Computer Research and Development, 2024, 61(8): 2020-2029.
    [168]
    QU Y S, LI Z L, ZHAO X H, et al. Towards real-world traffic prediction and data imputation: A multi-task pretraining and fine-tuning approach[J]. Information Sciences, 2024, 657: 119972. doi: 10.1016/j.ins.2023.119972
    [169]
    SHAO Z Z, ZHANG Z, WANG F, et al. Pre-training enhanced spatial-temporal graph neural network for multivariate time series forecasting[C]//ACM. Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2022: 1567-1577.
    [170]
    LI C, LIU W, YANG H. Deep causal inference for understanding the impact of meteorological variations on traffic[J]. Transportation Research Part C: Emerging Technologies, 2024, 165: 104744. doi: 10.1016/j.trc.2024.104744
    [171]
    LIU J M, LIN H, WANG X D, et al. Reliable trajectory prediction in scene fusion based on spatio-temporal structure causal model[J]. Information Fusion, 2024, 107: 102309. doi: 10.1016/j.inffus.2024.102309
    [172]
    HU J J, BAI J, YANG J Y, et al. Crash risk prediction using sparse collision data: Granger causal inference and graph convolutional network approaches[J]. Expert Systems with Applications, 2025, 259: 125315. doi: 10.1016/j.eswa.2024.125315
    [173]
    YIN J, LI B. Long-short-term expert attention neural networks for traffic flow prediction[C]//Springer. Advanced Intel-ligent Computing Technology and Applications. Munich: Springer, 2024: 3-14.
    [174]
    LI Shu-hao. ST-MoE: A spatio-temporal mixed expert framework for traffic forecasting depolarization[D]. Guangzhou: Guangzhou University, 2023.
    [175]
    JIANG W Z, HAN J D, LIU H, et al. Interpretable cascading mixture-of-experts for urban traffic congestion prediction[C]//ACM. Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2024: 5206-5217.
    [176]
    GUO S N, LIN Y F, GONG L T, et al. Self-supervised spatial-temporal bottleneck attentive network for efficient long-term traffic forecasting[C]//IEEE. 2023 IEEE 39th International Conference on Data Engineering (ICDE). New York: IEEE, 2023: 1585-1596.
    [177]
    ZHANG D R, YAN J N, POLAT K, et al. Multimodal joint prediction of traffic spatial-temporal data with graph sparse attention mechanism and bidirectional temporal convolutional network[J]. Advanced Engineering Informatics, 2024, 62: 102533. doi: 10.1016/j.aei.2024.102533.2022.1096186
    [178]
    FENG S F, FENG X X, XU L X, et al. BTD-GTAN: Federated traffic flow prediction with multimodal feature fusion considering anomalies[C]//IEEE. 2024 9th Inter-national Conference on Computer and Communication Systems (ICCCS). New York: IEEE, 2024: 462-467.
    [179]
    WANG B, QIN A K, SHAFIEI S, et al. Training physics-informed neural networks via multi-task optimization for traffic density prediction[C]//IEEE. 2023 International Joint Conference on Neural Networks (IJCNN). New York: IEEE, 2023: 1-7.
    [180]
    DENG P, ZHAO Y, LIU J T, et al. Spatio-temporal neural structural causal models for bike flow prediction[J]//AAAI. Proceedings of the AAAI Conference on Artificial Intel-ligence. Washington DC: AAAI Press, 2023: 4242-4249.
    [181]
    WANG H J, CHEN J Y, PAN T, et al. Easy begun is half done: Spatial-temporal graph modeling with ST-curriculum dropout[C]//AAAI. Proceedings of the AAAI Conference on Artificial Intelligence. Washington DC: AAAI Press, 2023: 4668-4675.
    [182]
    GUO H, MEESE C, LI W X, et al. B2SFL: A bi-level blockchained architecture for secure federated learning-based traffic prediction[J]. IEEE Transactions on Services Computing, 2023, 16(6): 4360-4374. doi: 10.1109/TSC.2023.3318990
    [183]
    LU B, GAN X Y, ZHANG W N, et al. Spatio-temporal graph few-shot learning with cross-city knowledge transfer[C]//ACM. Proceedings of the 28th ACM SIGKDD Confe-rence on Knowledge Discovery and Data Mining. New York: ACM, 2022: 1162-1172.
    [184]
    GUO X S, ZHANG Q M, JIANG J Y, et al. Towards explainable traffic flow prediction with large language models[J]. Communications in Transportation Research, 2024, 4: 100150. doi: 10.1016/j.commtr.2024.100150
    [185]
    YUAN Y, DING J T, FENG J, et al. UniST: A prompt-empowered universal model for urban spatio-temporal prediction[C]//ACM. Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2024: 4095-4106.
    [186]
    XIAO Jian-li, QIU Xue, ZHANG Yang, et al. Review on large language models in transportation[J]. Journal of Traffic and Transportation Engineering, 2025, 25(1): 8-28. doi: 10.19818/j.cnki.1671-1637.2025.01.002
    [187]
    DONG Han-xuan. Research on traffic state prediction method of expressway network under data loss[D]. Nanjing: Southeast University, 2022.
    [188]
    ZHAO Yong-mei, DONG Yun-wei. Spatio-temporal traffic data prediction based on low-rank tensor completion[J]. Journal of Traffic and Transportation Engineering, 2024, 24(4): 243-258. doi: 10.19818/j.cnki.1671-1637.2024.04.018

Catalog

    Article Metrics

    Article views (430) PDF downloads(58) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return