| Citation: | WANG Kai, LIANG Hong-zhi, LI Zhong-wei, CHI Yan-po, WANG Ya-peng, CAO Jian-lin, HUANG Lian-zhong. Review on research and application technology of marine methanol fuel power system[J]. Journal of Traffic and Transportation Engineering, 2026, 26(1): 116-131. doi: 10.19818/j.cnki.1671-1637.2026.055 |
| [1] |
YUAN Yu-peng, WANG Kang-yu, YIN Qi-zhi, et al. Review on ship speed optimization[J]. Journal of Traffic and Transportation Engineering, 2020, 20(6): 18-34.
|
| [2] |
YAN Xin-ping, HE Ya-peng, HE Yi, et al. Development trends of waterway transportation technology[J]. Journal of Traffic and Transportation Engineering, 2022, 22(4): 1-9.
|
| [3] |
LI Z W, WANG K, LIANG H Z, et al. Marine alternative fuels for shipping decarbonization: Technologies, applications and challenges[J]. Energy Conversion and Management, 2025, 329: 119641. doi: 10.1016/j.enconman.2025.119641
|
| [4] |
BORTNOWSKA M. Projected reductions in CO2 emissions by using alternative methanol fuel to power a service operation vessel[J]. Energies, 2023, 16(21): 7419. doi: 10.3390/en16217419
|
| [5] |
LIU Di, TANG Wei-jian, HAN Wei, et al. Marine fuels in the era of green hydrogen: Green methanol and green ammonia[J]. Chemical Industry and Engineering Progress, 2025, 44(12): 6747-6754.
|
| [6] |
PRUSSI M. Applying the international maritime organisation life cycle assessment guidelines to pyrolysis oil-derived blends: A sustainable option for marine fuels[J]. Energies, 2024, 17(21): 5464. doi: 10.3390/en17215464
|
| [7] |
MA B D, YAO A R, YAO C D, et al. Multiple combustion modes existing in the engine operating in diesel methanol dual fuel[J]. Energy, 2021, 234: 121285. doi: 10.1016/j.energy.2021.121285
|
| [8] |
ZHOU D Z, YANG W M, AN H, et al. A numerical study on RCCI engine fueled by biodiesel/methanol[J]. Energy Conversion and Management, 2015, 89: 798-807. doi: 10.1016/j.enconman.2014.10.054
|
| [9] |
FENG Shi-quan, HU Yi-huai, JIN Hao. Analysis of combustion characteristics of methanol and diesel dual fuel engine[J]. Environmental Engineering, 2016, 34(S1): 593-596.
|
| [10] |
YIN Y X, QI H Y, SU X, et al. Investigation of fuel composition and efficiency of solid oxide fuel cell with different methanol pretreating technologies[J]. International Journal of Green Energy, 2022, 19(8): 827-835. doi: 10.1080/15435075.2021.1964512
|
| [11] |
SIMON ARAYA S, LISO V, CUI X T, et al. A review of the methanol economy: The fuel cell route[J]. Energies, 2020, 13(3): 596. doi: 10.3390/en13030596
|
| [12] |
WU Y J, WANG J, HUANG G, et al. Phosphotungstic acid modification boosting the cathode methanol tolerance for high-temperature direct methanol fuel cells[J]. Journal of Power Sources, 2022, 541: 231643. doi: 10.1016/j.jpowsour.2022.231643
|
| [13] |
MCKINLAY C J, TURNOCK S R, HUDSON D A. Route to zero emission shipping: Hydrogen, ammonia or methanol?[J]. International Journal of Hydrogen Energy, 2021, 46(55): 28282-28297. doi: 10.1016/j.ijhydene.2021.06.066
|
| [14] |
XUAN Rong, NIU Meng-da, LI Pin-fang, et al. Research on the effect of blending methanol on marine diesel engine performance[J]. Ship Science and Technology, 2020, 42(21): 101-104, 109.
|
| [15] |
ZHU Jie. Application analysis of methanol as marine alternative fuel[J]. Ship & Ocean Engineering, 2023, 52(S1): 109-113.
|
| [16] |
BAO Tian-tian, LIAN Feng, YANG Zhong-zhen. Research review of shipping management[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 55-69. doi: 10.19818/j.cnki.1671-1637.2020.04.004
|
| [17] |
Klynveld Peat Marwick Goerdeler. The pathway to green shipping. Amsterdam: Klynveld Peat Marwick Goerdeler, 2021.
|
| [18] |
European Union. EU emissions trading system. Luxembourg: European Union, 2023.
|
| [19] |
European Union. Fuel EU maritime. Luxembourg: European Union, 2023.
|
| [20] |
ZHAO Zhong-qiu, HAO Jin-feng, QIANG Zhao-xin, et al. Study of carbon reduction routes for fleets based on dual carbon targets and lMO GHG reduction strategies[J]. Navigation of China, 2025, 48(1): 174-179, 189.
|
| [21] |
ZAHID U, KHALAFALLA S S, ALIBRAHIM H A, et al. Techno-economic evaluation of simultaneous methanol and hydrogen production via autothermal reforming of natural gas[J]. Energy Conversion and Management, 2023, 296: 117681. doi: 10.1016/j.enconman.2023.117681
|
| [22] |
SALAHUDEEN N, RASHEED A A, BABALOLA A, et al. Review on technologies for conversion of natural gas to methanol[J]. Journal of Natural Gas Science and Engineering, 2022, 108: 104845. doi: 10.1016/j.jngse.2022.104845
|
| [23] |
OSTADI M, BROMBERG L, ZANG G Y, et al. Flexible and synergistic methanol production via biomass gasification and natural gas reforming[J]. Cleaner Chemical Engineering, 2024, 10: 100120. doi: 10.1016/j.clce.2024.100120
|
| [24] |
SOLIS-JACOME A, RAMÍREZ-MÁRQUEZ C, MORALES-CABRERA M A, et al. Methanol production from residual streams of natural gas sweetening for achieving the sustainable development goals[J]. Chemical Engineering and Processing—Process Intensification, 2024, 199: 109746. doi: 10.1016/j.cep.2024.109746
|
| [25] |
BLUMBERG T, LEE Y D, MOROSUK T, et al. Exergoenvironmental analysis of methanol production by steam reforming and autothermal reforming of natural gas[J]. Energy, 2019, 181: 1273-1284. doi: 10.1016/j.energy.2019.05.171
|
| [26] |
JO S J, KANG T H, SHIN B J, et al. Internal carbon loop strategy for methanol production from natural gas: Multi-objective optimization and process evaluation[J]. Journal of Cleaner Production, 2023, 418: 138140. doi: 10.1016/j.jclepro.2023.138140
|
| [27] |
BASSANI A, BOZZANO G, PIROLA C, et al. Low impact methanol production from sulfur rich coal gasification[J]. Energy Procedia, 2017, 105: 4519-4524. doi: 10.1016/j.egypro.2017.03.970
|
| [28] |
INAC S, MIDILLI A. On geothermal and wind energy integrated methanol production by using green hydrogen[J]. Energy, 2025, 318: 134712. doi: 10.1016/j.energy.2025.134712
|
| [29] |
WANG T, ZHOU T, LI C R, et al. Biogas-to-methanol: A new green methanol production process based on anaerobic digestion of biomass[J]. Energy Conversion and Management, 2024, 321: 119065. doi: 10.1016/j.enconman.2024.119065
|
| [30] |
WISSNER N, HEALY S, CAMES M, et al. Methanol as a marine fuel. Berlin: Institute for Applied Ecology, 2023.
|
| [31] |
WANG Zhong-hua, PENG Cheng-yang, CHEN Hao, et al. Regulations compliance design of general arrangement and fuel tank structures for methanol fueled ships[J]. Ship Engineering, 2024, 46(12): 30-37.
|
| [32] |
Methanol Institute. Marine methanol future-proof shipping fuel. Washington DC: Methanol Institute, 2023.
|
| [33] |
American Bureau of Shipping. Methanol bunkering: Technical and operational advisory. Houston: American Bureau of Shipping, 2024.
|
| [34] |
JIANG Ji-jiang, WANG Yuan, SHI Liang-liang. New energy applications of ammonia and methanol on large container vessels[J]. Ship Engineering, 2024, 46(7): 74-80.
|
| [35] |
LIU H, YANG Y J, ZHOU Z J, et al. Numerical investigation on the efficiency improvement and knock mitigation through combustion chamber optimization in a heavy-duty spark-ignition methanol engine with EGR[J]. Applied Thermal Engineering, 2025, 264: 125469. doi: 10.1016/j.applthermaleng.2025.125469
|
| [36] |
KIOURANAKIS K I, DE VOS P, ZOUMPOURLOS K, et al. Methanol for heavy-duty internal combustion engines: Review of experimental studies and combustion strategies[J]. Renewable and Sustainable Energy Reviews, 2025, 214: 115529. doi: 10.1016/j.rser.2025.115529
|
| [37] |
ZHEN X D, WANG Y. An overview of methanol as an internal combustion engine fuel[J]. Renewable and Sustainable Energy Reviews, 2015, 52: 477-493. doi: 10.1016/j.rser.2015.07.083
|
| [38] |
DOU Z C, YAO C D, WEI H Y, et al. Experimental study of the effect of engine parameters on ultrafine particle in diesel/methanol dual fuel engine[J]. Fuel, 2017, 192: 45-52. doi: 10.1016/j.fuel.2016.12.006
|
| [39] |
SAXENA M R, MAURYA R K, MISHRA P. Assessment of performance, combustion and emissions characteristics of methanol-diesel dual-fuel compression ignition engine: A review[J]. Journal of Traffic and Transportation Engineering: English Edition, 2021, 8(5): 638-680. doi: 10.1016/j.jtte.2021.02.003
|
| [40] |
LI C J, WANG Z X, LIU H, et al. Integrated analysis and performance optimization of fuel cell engine cogeneration system with methanol for marine application[J]. Renewable and Sustainable Energy Reviews, 2024, 199: 114564. doi: 10.1016/j.rser.2024.114564
|
| [41] |
LIU H F, MA G X, MA N F, et al. Effects of charge concentration and reactivity stratification on combustion and emission characteristics of a PFI-DI dual injection engine under low load condition[J]. Fuel, 2018, 231: 26-36. doi: 10.1016/j.fuel.2018.05.027
|
| [42] |
PAN W, YAO C D, HAN G P, et al. The impact of intake air temperature on performance and exhaust emissions of a diesel methanol dual fuel engine[J]. Fuel, 2015, 162: 101-110. doi: 10.1016/j.fuel.2015.08.073
|
| [43] |
YANG D, WEI S M, MA Y J, et al. Influence of critical parameters on combustion and emission characteristics of methanol/diesel dual fuel compression combustion engine[J]. Fuel, 2024, 368: 131647. doi: 10.1016/j.fuel.2024.131647
|
| [44] |
LU H, YAO A R, YAO C D, et al. An investigation on the characteristics of and influence factors for NO2 formation in diesel/methanol dual fuel engine[J]. Fuel, 2019, 235: 617-626. doi: 10.1016/j.fuel.2018.08.061
|
| [45] |
MA B D, YAO A R, YAO C D, et al. Exergy loss analysis on diesel methanol dual fuel engine under different operating parameters[J]. Applied Energy, 2020, 261: 114483. doi: 10.1016/j.apenergy.2019.114483
|
| [46] |
TIAN Z, WANG Y, ZHEN X D, et al. The effect of methanol production and application in internal combustion engines on emissions in the context of carbon neutrality: A review[J]. Fuel, 2022, 320: 123902. doi: 10.1016/j.fuel.2022.123902
|
| [47] |
RAO X, YUAN C Q, GUO Z W, et al. Methanol as an alternative fuel for marine engines: A comprehensive review of current state, opportunities, and challenges[J]. Renewable Energy, 2025, 252: 123562. doi: 10.1016/j.renene.2025.123562
|
| [48] |
TAO W H, SUN T, GUO W J, et al. The effect of diesel pilot injection strategy on combustion and emission characteristic of diesel/methanol dual fuel engine[J]. Fuel, 2022, 324: 124653. doi: 10.1016/j.fuel.2022.124653
|
| [49] |
YU J, ZHOU F, FU J Q, et al. Research on the influence of injection strategies on the in-cylinder combustion process and emissions of methanol[J]. Biomass and Bioenergy, 2024, 188: 107340. doi: 10.1016/j.biombioe.2024.107340
|
| [50] |
KARVOUNIS P, THEOTOKATOS G, PATIL C, et al. Parametric investigation of diesel-methanol dual fuel marine engines with port and direct injection[J]. Fuel, 2025, 381: 133441. doi: 10.1016/j.fuel.2024.133441
|
| [51] |
WU T Y, YAO A R, YAO C D, et al. Effect of diesel late-injection on combustion and emissions characteristics of diesel/methanol dual fuel engine[J]. Fuel, 2018, 233: 317-327. doi: 10.1016/j.fuel.2018.06.063
|
| [52] |
LI Z Y, WANG Y, GENG H M, et al. Investigation of injection strategy for a diesel engine with directly injected methanol and pilot diesel at medium load[J]. Fuel, 2020, 266: 116958. doi: 10.1016/j.fuel.2019.116958
|
| [53] |
LI Z Y, WANG Y, YIN Z B, et al. Effect of injection strategy on a diesel/methanol dual-fuel direct-injection engine[J]. Applied Thermal Engineering, 2021, 189: 116691. doi: 10.1016/j.applthermaleng.2021.116691
|
| [54] |
LI Z Y, WANG Y, WANG Y J, et al. Effects of fuel injection timings and methanol split ratio in M/D/M strategy on a diesel/methanol dual-fuel direct injection engine[J]. Fuel, 2022, 325: 124970. doi: 10.1016/j.fuel.2022.124970
|
| [55] |
YIN X J, XU L L, DUAN H, et al. In-depth comparison of methanol port and direct injection strategies in a methanol/diesel dual fuel engine[J]. Fuel Processing Technology, 2023, 241: 107607. doi: 10.1016/j.fuproc.2022.107607
|
| [56] |
YU Y, WEN H B. Investigation on efficient and clean combustion pre-injection strategy of a diesel/methanol dual direct-injection marine engine under full load[J]. Case Studies in Thermal Engineering, 2024, 59: 104472. doi: 10.1016/j.csite.2024.104472
|
| [57] |
SUN W C, JIANG M Q, GUO L, et al. Numerical study of injection strategies for marine methanol/diesel direct dual fuel stratification engine[J]. Journal of Cleaner Production, 2023, 421: 138505. doi: 10.1016/j.jclepro.2023.138505
|
| [58] |
YIN X J, LI W, DUAN H, et al. A comparative study on operating range and combustion characteristics of methanol/diesel dual direct injection engine with different methanol injection timings[J]. Fuel, 2023, 334: 126646. doi: 10.1016/j.fuel.2022.126646
|
| [59] |
LI Y P, JIA M, XU L L, et al. Multiple-objective optimization of methanol/diesel dual-fuel engine at low loads: A comparison of reactivity controlled compression ignition (RCCI) and direct dual fuel stratification (DDFS) strategies[J]. Fuel, 2020, 262: 116673. doi: 10.1016/j.fuel.2019.116673
|
| [60] |
MA B D, YAO A R, YAO C D, et al. Experimental study on energy balance of different parameters in diesel methanol dual fuel engine[J]. Applied Thermal Engineering, 2019, 159: 113954. doi: 10.1016/j.applthermaleng.2019.113954
|
| [61] |
WANG B, YAO A R, CHEN C, et al. Strategy of improving fuel consumption and reducing emission at low load in a diesel methanol dual fuel engine[J]. Fuel, 2019, 254: 115660. doi: 10.1016/j.fuel.2019.115660
|
| [62] |
WU De-yang, WEN Hua-bing, XU Chang-chun, et al. Effects of injector parameters on combustion and emission characteristics of marine micro-ignition methanol engine[J]. Chinese Journal of Ship Research, 2024, 19(4): 131-138.
|
| [63] |
KARVOUNIS P, THEOTOKATOS G. Performance improvement and emissions reduction of methanol fuelled marine dual-fuel engine with variable compression ratio[J]. Fuel Processing Technology, 2025, 272: 108208. doi: 10.1016/j.fuproc.2025.108208
|
| [64] |
CHEN Z F, YAO C D, YAO A R, et al. The impact of methanol injecting position on cylinder-to-cylinder variation in a diesel methanol dual fuel engine[J]. Fuel, 2017, 191: 150-163. doi: 10.1016/j.fuel.2016.11.072
|
| [65] |
XU Z, JIA M, LI Y P, et al. Computational optimization of fuel supply, syngas composition, and intake conditions for a syngas/diesel RCCI engine[J]. Fuel, 2018, 234: 120-134. doi: 10.1016/j.fuel.2018.07.003
|
| [66] |
XU G F, GARCÍA A, JIA M, et al. Computational optimization of the piston bowl geometry for the different combustion regimes of the dual-mode dual-fuel (DMDF) concept through an improved genetic algorithm[J]. Energy Conversion and Management, 2021, 246: 114658. doi: 10.1016/j.enconman.2021.114658
|
| [67] |
JALILIANTABAR F, GHOBADIAN B, NAJAFI G, et al. Multi-objective NSGA-Ⅱ optimization of a compression ignition engine parameters using biodiesel fuel and exhaust gas recirculation[J]. Energy, 2019, 187: 115970. doi: 10.1016/j.energy.2019.115970
|
| [68] |
SHIRVANI S, SHIRVANI S, SHAMEKHI A H, et al. Meeting EURO6 emission regulations by multi-objective optimization of the injection strategy of two direct injectors in a DDFS engine[J]. Energy, 2021, 229: 120737. doi: 10.1016/j.energy.2021.120737
|
| [69] |
LI Y P, CAI Y K, JIA M, et al. A full-parameter computational optimization of both injection parameters and injector layouts for a methanol/diesel dual-fuel direct injection compression ignition engine[J]. Fuel, 2024, 369: 131733. doi: 10.1016/j.fuel.2024.131733
|
| [70] |
YANG Y, LONG W Q, DONG P B, et al. Performance of large-bore methanol/diesel dual direct injection engine applying asymmetrical diesel nozzle strategies[J]. Applied Thermal Engineering, 2024, 244: 122674. doi: 10.1016/j.applthermaleng.2024.122674
|
| [71] |
CUNG K D, WALLACE J, KALASKAR V, et al. Experimental study on engine and emissions performance of renewable diesel methanol dual fuel (RMDF) combustion[J]. Fuel, 2024, 357: 129664. doi: 10.1016/j.fuel.2023.129664
|
| [72] |
WEI F, ZHANG Z H, WEI W W, et al. Multi-objective optimization of the performance for a marine methanol-diesel dual-fuel engine[J]. Fuel, 2024, 368: 131556. doi: 10.1016/j.fuel.2024.131556
|
| [73] |
SEYAM S, DINCER I, AGELIN-CHAAB M. Optimization and comparative evaluation of novel marine engines integrated with fuel cells using sustainable fuel choices[J]. Energy, 2024, 301: 131629. doi: 10.1016/j.energy.2024.131629
|
| [74] |
VAN VELDHUIZEN B N, VAN BIERT L, AMLADI A, et al. The effects of fuel type and cathode off-gas recirculation on combined heat and power generation of marine SOFC systems[J]. Energy Conversion and Management, 2023, 276: 116498. doi: 10.1016/j.enconman.2022.116498
|
| [75] |
LI C J, WANG Z X, LIU H, et al. 4E analysis of a novel proton exchange membrane fuel cell/engine based cogeneration system with methanol fuel for ship application[J]. Energy, 2023, 282: 128741. doi: 10.1016/j.energy.2023.128741
|
| [76] |
DUONG P A, RYU B, JUNG J, et al. Design, modelling, and thermodynamic analysis of a novel marine power system based on methanol solid oxide fuel cells, integrated proton exchange membrane fuel cells, and combined heat and power production[J]. Sustainability, 2022, 14(19): 12496. doi: 10.3390/su141912496
|
| [77] |
LI C J, WANG Z X, LIU H, et al. Energy and configuration management strategy for solid oxide fuel cell/engine/battery hybrid power system with methanol on marine: A case study[J]. Energy Conversion and Management, 2024, 307: 118355. doi: 10.1016/j.enconman.2024.118355
|
| [78] |
CHEN M, WANG M, YANG Z Y, et al. Long-term degradation behaviors research on a direct methanol fuel cell with more than 3 000 h lifetime[J]. Electrochimica Acta, 2018, 282: 702-710. doi: 10.1016/j.electacta.2018.06.116
|
| [79] |
LIU J G, ZHOU Z H, ZHAO X S, et al. Studies on performance degradation of a direct methanol fuel cell (DMFC) in life test[J]. Physical Chemistry Chemical Physics, 2004, 6(1): 134-137. doi: 10.1039/b313478d
|
| [80] |
WANG Z B, SHAO Y Y, ZUO P J, et al. Durability studies of unsupported Pt cathodic catalyst with working time of direct methanol fuel cells[J]. Journal of Power Sources, 2008, 185(2): 1066-1072. doi: 10.1016/j.jpowsour.2008.08.045
|
| [81] |
MVLLER M, KIMIAIE N, GLVSEN A. Direct methanol fuel cell systems for backup power—Influence of the standby procedure on the lifetime[J]. International Journal of Hydrogen Energy, 2014, 39(36): 21739-21745. doi: 10.1016/j.ijhydene.2014.08.132
|
| [82] |
WANG S S. Risk analysis of ship methanol fuel system based on fuzzy Bayesian network model based on bow-tie diagram//ACM. Proceedings of the 2024 3rd International Symposium on Intelligent Unmanned Systems and Artificial Intelligence. New York: ACM, 2024: 327-378.
|
| [83] |
ELLIS J, TANNEBERGER K. Study on the use of ethyl and methyl alcohol as alternative fuels in shipping. Athens: European Maritime Safety Agency, 2015.
|
| [84] |
XING H, STUART C, SPENCE S, et al. Alternative fuel options for low carbon maritime transportation: Pathways to 2050[J]. Journal of Cleaner Production, 2021, 297: 126651. doi: 10.1016/j.jclepro.2021.126651
|
| [85] |
ZHOU T Q, WU C Z, ZHANG J Y, et al. Incorporating CREAM and MCS into fault tree analysis of LNG carrier spill accidents[J]. Safety Science, 2017, 96: 183-191. doi: 10.1016/j.ssci.2017.03.015
|
| [86] |
International Maritime Organization. Interim guidelines for the safety of ships using methyl/ethyl alcohol as fuel. London: International Maritime Organization, 2020.
|
| [87] |
SHI J, ZHU Y Q, FENG Y M, et al. A prompt decarbonization pathway for shipping: Green hydrogen, ammonia, and methanol production and utilization in marine engines[J]. Atmosphere, 2023, 14(3): 584. doi: 10.3390/atmos14030584
|
| [88] |
Marine Fuels & Marine Engine Users. Methanol superstorage solution revolutionizes maritime fuel storage. Houston: Marine Fuels & Marine Engine Users, 2024.
|
| [89] |
Marine Safety Forum. The carriage of methanol in bulk onboard offshore vessels. London: Marine Safety Forum, 2020.
|
| [90] |
ANKATHI S, LU Z F, ZAIMES G G, et al. Greenhouse gas emissions from the global transportation of crude oil: Current status and mitigation potential[J]. Journal of Industrial Ecology, 2022, 26(6): 2045-2056. doi: 10.1111/jiec.13262
|
| [91] |
LIU L, WU Y, WANG Y, et al. Exploration of environmentally friendly marine power technology-ammonia/diesel stratified injection[J]. Journal of Cleaner Production, 2022, 380: 135014. doi: 10.1016/j.jclepro.2022.135014
|
| [92] |
AMMAR N R. An environmental and economic analysis of methanol fuel for a cellular container ship[J]. Transportation Research Part D: Transport and Environment, 2019, 69: 66-76. doi: 10.1016/j.trd.2019.02.001
|
| [93] |
MA Y, WANG Z, LIU H, et al. Efficient and sustainable power propulsion for all-electric ships: An integrated methanol-fueled SOFC-sCO2 system[J]. Renewable Energy, 2024, 230: 120822. doi: 10.1016/j.renene.2024.120822
|
| [94] |
LI Teng-fei, GE Xiu-jiang, XUE Qi. Analysis on the development and prospect of methanol-fueled Ships[J]. Gsi Shipbuilding Technology, 2023, 43(3): 92-96.
|
| [95] |
BAYRAKTAR M, YUKSEL O, PAMIK M. An evaluation of methanol engine utilization regarding economic and upcoming regulatory requirements for a container ship[J]. Sustainable Production and Consumption, 2023, 39: 345-356. doi: 10.1016/j.spc.2023.05.029
|
| [96] |
BLUMBERG T, TSATSARONIS G, MOROSUK T. On the economics of methanol production from natural gas[J]. Fuel, 2019, 256: 115824. doi: 10.1016/j.fuel.2019.115824
|