JIN Xue-song, WEN Ze-feng, WANG Kai-yun. Theoretical model and numerical method of rail corrugation[J]. Journal of Traffic and Transportation Engineering, 2005, 5(2): 12-18.
Citation: JIN Xue-song, WEN Ze-feng, WANG Kai-yun. Theoretical model and numerical method of rail corrugation[J]. Journal of Traffic and Transportation Engineering, 2005, 5(2): 12-18.

Theoretical model and numerical method of rail corrugation

More Information
  • Author Bio:

    Jin Xue-song(1956-), male, professor, 86-28-87634355, xsjin@home.swjtu.edu.cn

  • Received Date: 2005-04-20
  • Publish Date: 2005-06-25
  • The theoretical models of rail corrugation were analyzed, a theoretical model and its numerical method for rail corrugation attributed to material wear were put forward. In the model, the non-Hertzian rolling contact theory of wheel and rail system, rail material wear model and coupling dynamics of rail vehicle and track in the vertical and lateral directions were combined, a passenger car and the structure under rails were replaced by the systems consisting of dampers, springs and equivalent mass bodies, and the Euler beam was utilized to model the rails accounting for bending and twisting deformations, Kalker's non-Hertzian rolling contact theory of three-dimensional elastic bodies was modified to calculate the creep forces and frictional work density on the contact patch of wheel and rail. It was assumed that the material loss unit area of the contact patch was proportional to the frictional work density that determines the wear depth of the rail running surface. The presented model and its numerical method were used to analyze two kinds of corrugation cases. The results show that the initiation and development of the corrugations caused by various track defects, such as track gap, scratch, dent, sleeper pitch and random geometry irregularities can be analysed, the evolution of initial corrugation on rail running surface caused by manufacturing and grinding can be simulated, they are feasible to protect the initiation and development of rail corrugation.

     

  • loading
  • [1]
    Mair R I. Track design to prevent long-pitch rail corrugation [J]. Bulletin, 1983, 84(4): 289-300. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT202003017.htm
    [2]
    Grassie S L, Gregory R W, Harrison D, et al. The dynamic response of railway track to high frequency vertical/later gitudinal excitation[J]. Journal of Mechanical Engineering Society, 1982, 24(2): 77-102. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202105005.htm
    [3]
    Ripke B, Knothe K. Die unendlich lange schiene auf diskreten schwellen bei harmonischer einzellasterregung[R]. VDI Fortschritt-Berichte, VDI-Verlag, Düsseldorf, 1991.
    [4]
    Frederick C O. A rail corrugation theory[A]. Proceedings of the Second Conference on the Contact Mechanics and Wear of Rail/Wheel Systems[C]. Kingston: University of Vaterloo Press, 1986.
    [5]
    Valdivia A. A linear dynamic wear model to explain the initiating mechanism of corrugation[A]. Proceedings of the 10th IAVSD-Symposium[C]. Swets Zeitlinger, Amsterdam/Lisse, 1988.
    [6]
    Hempelmann K. Shortpitch corrugation on railway rails: a linear model for prediction[R]. VDI Fortschritt-Berichte, VDI-Verlag, Düsseldorf, 1994.
    [7]
    Hempelmann K, Knothe K. An extended linear model for the prediction of short-pitch corrugation[J]. Wear, 1996, 191(2): 161-169. https://www.cnki.com.cn/Article/CJFDTOTAL-JFXG202011015.htm
    [8]
    Jin Xue-song, Wang Kai-yun, Wen Ze-feng, et al. Effect of discrete supports of rail on initiation and evolution of rail corrugation[J]. Journal of Mechanical Engineering, 2005, 18(1): 37-41. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202101011.htm
    [9]
    Jin Xue-song, Wen Ze-feng, Wang Kai-yun, et al. Effect of a scratch on curved rail on initiation and evolution of rail corrugation[J]. Tribology International, 2004, 37(5): 385-394. https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX202002011.htm
    [10]
    Jin Xue-song, Wen Ze-feng, Wang Kai-yun. Effect of track irregularities on initiation and evolution of rail corrugation[J]. Journal of Sound and Vibration, 2005, 285(1): 121-135. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY202103006.htm
    [11]
    JinXuesong, WenZefeng, WangKaiyun, etal. Effectof high frequency vertical vibration of track on formation and evolution of corrugation[J]. Tsinghua Science and Technoloy, 2004, 9(3): 274-280. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGRK202010008.htm
    [12]
    Clark R A, Foster P. On the mechanics of rail corrugation formation[A]. Proceeding of the 8th IAVSD-Symposium[C]. Cambridge, MA, Swets Zeitlinger(Amsterdam/Lisse), 1984.
    [13]
    Clark R A, Scott G A, Poole W. Short wave corrugationsan explanation based on stick-slip vibrations[J]. Applied Mechanics Rail Transportation Symposium ASME, 1988, 96(2): 141-148. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202101001.htm
    [14]
    Tassilly E, Vincent N. A linear model for the corrugation of rails[J]. Journal of Sound and Vibration, 1991, 150(1): 25-45. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZJ202101006.htm
    [15]
    Tassilly E, Vincent N. Rail corrugations: analytical models and field tests[J]. Wear, 1991, 144(2): 163-178. https://www.cnki.com.cn/Article/CJFDTOTAL-HSYJ201911007.htm
    [16]
    Müller S. A linear wheel-rail model to investigate stability and corrugation on straight track[J]. Wear, 2000, 243(2): 122-132. https://www.cnki.com.cn/Article/CJFDTOTAL-CGGL202008001.htm
    [17]
    Müller S. A linear wheel-rail model to predict instability and short pitch corrugation[J]. Journal of Sound and Vibration, 1999, 227(5): 899-913. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201810014.htm
    [18]
    Igeland A. Rail head corrugation growth predictions based non-linear high frequency vehicle/track interaction[J]. Wear, 1997, 213(1): 90-97. https://www.cnki.com.cn/Article/CJFDTOTAL-GGYY201610007.htm
    [19]
    Ilias H. The influence of rail-pad stiffness on wheelset/track interaction and corrugation growth[J]. Journal of Sound and Vibration, 1999, 227(7): 935-948. https://www.cnki.com.cn/Article/CJFDTOTAL-NYJS202010007.htm
    [20]
    Nielsen J B. A nonlinear wear model[J]. ASME, Rail Transportation, 1997, 13(1): 7-20. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202202004.htm
    [21]
    Nielsen J B. Evolution of rail corrugation predicted with a nonlinear wear model[J]. Journal of Sound and Vibration, 1999, 227(5): 915-933. https://www.cnki.com.cn/Article/CJFDTOTAL-JGZZ202102032.htm
    [22]
    Böhmer A, Klimpel T. Plastic deformation of corrugated rails -a numerical approach using material data of rail steel[J]. Wear, 2002, 253(2): 150-161. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD202105025.htm
    [23]
    翟婉明. 车辆-轨道耦合动力学[M]. 北京: 中国铁道出版社, 2002.
    [24]
    Kalker J J. Three-Dimensional Elastic Bodies in Rolling Contact[M]. Kluwer Academic Publishers, the Netherlands, 1990.
    [25]
    Bolton P J, Clayton P, McEwan I J. Rollingsliding wear damage in rail and tyre steels[J]. Wear, 1987, 120(2): 145-165. https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX202201009.htm
    [26]
    Clayton P. Tribological aspects of wheel-rail contact: a review of recent experimental research[J]. Wear, 1996, 191(2): 170-183. https://www.cnki.com.cn/Article/CJFDTOTAL-JTTE202106001.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (372) PDF downloads(541) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return