LI Jia-wu, WANG Xin, ZHANG Yue, GAO Meng, CHEN Zi-tao. Chaos characteristics of wind-induced vibrations for bridge[J]. Journal of Traffic and Transportation Engineering, 2014, 14(3): 34-42.
Citation: LI Jia-wu, WANG Xin, ZHANG Yue, GAO Meng, CHEN Zi-tao. Chaos characteristics of wind-induced vibrations for bridge[J]. Journal of Traffic and Transportation Engineering, 2014, 14(3): 34-42.

Chaos characteristics of wind-induced vibrations for bridge

More Information
  • Author Bio:

    LI Jia-wu (1972-), male, professor, PhD, +86-29-82336252, ljw@gl.chd.edu.cn

  • Received Date: 2014-01-17
  • Publish Date: 2014-06-25
  • According to nonlinear theory and chaotic time series analysis method, the mathematical model of bridge wind-induced vibration was built.The MATLAB program for calculating the Lyapunov exponent of bridge vibration acceleration time series was developed, and the flutter and vortex vibration were tested in wind tunnel.Under various wind attack angles, the damping ratios of bridge wind-induced vibrations, the relationships between Lyapunov exponents and wind speeds, and the relationships between vortex vibration amplitudes and wind speeds were analyzed, and the chaos characteristics of flutter and vortex vibration were studied.Test result indicates when wind speed is less than critical wind speed (15.5 m·s-1), the Lyapunov exponent is negative in flutter test, and the close correlation between Lyapunov exponent and damping ratio is found.When wind speed increases from 3 m·s-1 to 18 m·s-1, the phase space becomes divergent gradually.In vortex vibration test, when wind speed increases from 4.5 m·s-1 to 8.5 m·s-1, the Lyapunov exponent is more than 0, obvious vortex vibration happens, and multi-frequency vibration turns to single frequency vibration gradually.The phase space also becomes an ideal circle.Both flutter and vortex vibration are chaos phenomena.Lyapunov exponent at low wind speed can be used to predict the wind-induced vibrations at high windspeed, and the phase space can also be used to explain flutter and vortex vibration.

     

  • loading
  • [1]
    项海帆. 进入21世纪的桥梁风工程研究[J]. 同济大学学报: 自然科学版, 2002, 30 (5): 529-532. doi: 10.3321/j.issn:0253-374X.2002.05.001

    XIANG Hai-fan. Study on bridge wind engineering into 21st century[J]. Journal of Tongji University: Natural Science, 2002, 30 (5): 529-532. (in Chinese). doi: 10.3321/j.issn:0253-374X.2002.05.001
    [2]
    OMENZETTER P. Sensitivity analysis of the eigenvalue problem for general dynamic systems with application to bridge deck flutter[J]. Journal of Engineering Mechanics, 2012, 138 (6): 675-682. doi: 10.1061/(ASCE)EM.1943-7889.0000377
    [3]
    NIETO F. An analytical approach to sensitivity analysis of the flutter speed in bridges considering variable deck mass[J]. Advances in Engineering Software, 2011, 42 (4): 117-129. doi: 10.1016/j.advengsoft.2010.12.003
    [4]
    ARGENTINI T, PAGANI A, ROCCHI D, et al. Monte Carlo analysis of total damping and flutter speed of a long span bridge: effects of structural and aerodynamic uncertainties[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 128 (2): 90-104.
    [5]
    BRUSIANI F. On the evaluation of bridge deck flutter derivatives using RANS turbulence models[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2013, 119 (1): 39-47.
    [6]
    郭增伟, 葛耀君, 杨詠昕. 基于状态空间的桥梁颤振分析[J]. 华中科技大学学报: 自然科学版, 2012, 40 (11): 27-32. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201211005.htm

    GUO Zeng-wei, GE Yao-jun, YANG Yong-xin. Flutter analysis of bridge based on state-space approach[J]. Journal of Huazhong University of Science and Technology: Nature Science Edition, 2012, 40 (11): 27-32. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201211005.htm
    [7]
    辛大波, 欧进萍, 李惠, 等. 基于定常吸气方式的大跨桥梁风致颤振抑制方法[J]. 吉林大学学报: 工学版, 2011, 41 (5): 1273-1278. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201105016.htm

    XIN Da-bo, OU Jin-ping, LI Hui, et al. Suppression method for wind-induced flutter of long-span bridge based on steady air-suction[J]. Journal of Jilin University: Engineering and Technology Edition, 2011, 41 (5): 1273-1278. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201105016.htm
    [8]
    CASALOTTI A, ARENA A, LACARBONARA W. Mitigation of post-flutter oscillations in suspension bridges by hysteretic tuned mass dampers[J]. Engineering Structures, 2014, 69 (2): 62-71.
    [9]
    许福友, 林志兴, 李永宁, 等. 气动措施抑制桥梁涡振机理研究[J]. 振动与冲击, 2010, 29 (1): 73-76. doi: 10.3969/j.issn.1000-3835.2010.01.016

    XU Fu-you, LIN Zhi-xing, LI Yong-ning, et al. Research on vortex resonance depression mechanism of bridge deck with aerodynamic measures[J]. Journal of Vibration and Shock, 2010, 29 (1): 73-76. (in Chinese). doi: 10.3969/j.issn.1000-3835.2010.01.016
    [10]
    PATIL A. Mitigation of vortex-induced vibrations in bridges under conflicting objectives[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2011, 99 (12): 1243-1252. doi: 10.1016/j.jweia.2011.10.001
    [11]
    李清都, 杨晓松. 基于拓扑马蹄的混沌动力学研究进展[J]. 动力学与控制学报, 2012, 10 (4): 293-298. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXK201204005.htm

    LI Qing-du, YANG Xiao-song. Progresses on chaotic dynamics study with topological horseshoes[J]. Journal of Dynamics and Control, 2012, 10 (4): 293-298. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DLXK201204005.htm
    [12]
    何四祥. 混沌在结构工程中的应用研究[D]. 上海: 同济大学, 2007.

    HE Si-xiang. Chaos in the application of structural engineering research[D]. Shanghai: Tongji University, 2007. (in Chinese).
    [13]
    HU Gao-ge, GAO She-sheng, GAO Bing-bing. Chaos control in Cournot-Puu model[J]. Applied Mechanics and Materials, 2014, 494 (1): 1189-1194.
    [14]
    POIREL D, PRICE S J. Random binary (coalescence) flutter of a two-dimensional linear airfoil[J]. Journal of Fluids and Structures, 2003, 18 (1): 23-42. doi: 10.1016/S0889-9746(03)00074-4
    [15]
    余宏波. 斜拉桥拉索风雨激振混沌特性应用研究[D]. 西安: 长安大学, 2012.

    YU Hong-bo. Application research on chaotic characteristics of wind-rain induced vibration of cables for the cable-stayed bridges[D]. Xi'an: Chang'an University, 2012. (in Chinese).
    [16]
    CARACOGLIA L. An Euler-Monte Carlo algorithm assessing Moment Lyapunov Exponents for stochastic bridge flutter predictions[J]. Computers and Structures, 2013, 122 (1): 65-77.
    [17]
    张文胜, 崔志伟. 铁路客运专线特大桥沉降预测模型[J]. 交通运输工程学报, 2011, 11 (6): 31-36. http://transport.chd.edu.cn/article/id/201106005

    ZHANG Wen-sheng, CUI Zhi-wei. Settlement prediction model of super large bridge for passenger dedicated railway[J]. Journal of Traffic and Transportation Engineering, 2011, 11 (6): 31-36. (in Chinese). http://transport.chd.edu.cn/article/id/201106005
    [18]
    李国辉, 周世平, 徐得名. 时间序列最大Lyapunov指数的计算[J]. 应用科学学报, 2003, 21 (2): 127-131. doi: 10.3969/j.issn.0255-8297.2003.02.004

    LI Guo-hui, ZHOU Shi-ping, XU De-ming. Computing the largest Lyapunov exponent from time series[J]. Journal of Applied Sciences, 2003, 21 (2): 127-131. (in Chinese). doi: 10.3969/j.issn.0255-8297.2003.02.004
    [19]
    郭增伟, 葛耀君. 桥梁自激力脉冲响应函数及颤振时域分析[J]. 中国公路学报, 2013, 26 (6): 103-109. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201306018.htm

    GUO Zeng-wei, GE Yao-jun. Impulse response functions of self-excited force and flutter analysis in time domain for bridge[J]. China Journal of Highway and Transport, 2013, 26 (6): 103-109. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201306018.htm
    [20]
    管青海, 李加武, 刘建新. 典型箱梁断面双竖向涡振区的成因分析[J]. 长安大学学报: 自然科学版, 2013, 33 (4): 40-46. doi: 10.3969/j.issn.1671-8879.2013.04.008

    GUAN Qing-hai, LI Jia-wu, LIU Jian-xin. Investigation into formation of two lock-in districts of vertical vortex-induced vibration of a box bridge deck section[J]. Journal of Chang'an University: Natural Science Edition, 2013, 33 (4): 40-46. (in Chinese). doi: 10.3969/j.issn.1671-8879.2013.04.008
    [21]
    许伦辉, 刘邦明. 城市交通信号控制与仿真[J]. 公路交通科技, 2013, 30 (9): 109-115. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201309017.htm

    XU Lun-hui, LIU Bang-ming. Urban traffic signal control and simulation[J]. Journal of Highway and Transportation Research and Development, 2013, 30 (9): 109-115. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201309017.htm
    [22]
    胡庆安, 乔云强, 刘建新. MSS62.5移动模架造桥机风洞试验及抗风分析[J]. 筑路机械与施工机械化, 2006, 23 (10): 36-38. doi: 10.3969/j.issn.1000-033X.2006.10.017

    HU Qing-an, QIAO Yun-qiang, LIU Jian-xin. Wind tunnel test and anti-wind analysis for MSS62.5[J]. Road Machinery and Construction Mechanization, 2006, 23 (10): 36-38. (in Chinese). doi: 10.3969/j.issn.1000-033X.2006.10.017
    [23]
    LIU Xiao-gang, FAN Jian-sheng, NIE Jian-guo, et al. Behavior of composite rigid frame bridge under bi-directional seismic excitations[J]. Journal of Traffic and Transportation Engineering: English Edition, 2014, 1 (1): 62-71. doi: 10.1016/S2095-7564(15)30090-8
    [24]
    FU Mei-zhen, LIU Yong-jian, LI Na, et al. Application of modern timber structure in short and medium span bridges in China[J]. Journal of Traffic and Transportation Engineering: English Edition, 2014, 1 (1): 72-80. doi: 10.1016/S2095-7564(15)30091-X
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (654) PDF downloads(728) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return