CHEN Xiao-ping, WANG Fang-fang, ZHAO Cai-you. Fracture influence of longitudinal-continuous base layer on force characteristics of CRTSⅡ slab ballastless track on bridge[J]. Journal of Traffic and Transportation Engineering, 2014, 14(4): 25-35.
Citation: CHEN Xiao-ping, WANG Fang-fang, ZHAO Cai-you. Fracture influence of longitudinal-continuous base layer on force characteristics of CRTSⅡ slab ballastless track on bridge[J]. Journal of Traffic and Transportation Engineering, 2014, 14(4): 25-35.

Fracture influence of longitudinal-continuous base layer on force characteristics of CRTSⅡ slab ballastless track on bridge

More Information
  • Author Bio:

    CHEN Xiao-ping(1978-), male, associate professor, PhD, +86-28-84616652, cxp193@163.com

  • Received Date: 2014-02-18
  • Publish Date: 2014-08-25
  • The mechanics model of longitudinal interaction between CRTSⅡ slab ballastless track and bridge was established considering the fracture of longitudinal-continuous base layer(LCBL), and was solved by finite element method.Key calculation parameters of ballastless track were determined.A bridge with long-span continuous beam was taken as an example, the longitudinal forces and displacements of rail, slab, mortar and bridge support were analyzed when LCBLs with the temperature reductions of 10, 20, 30, 40, 50 ℃ were fractured at 7 typical positions on long-span continuous beam.Analysis result indicates that when the temperature reduction of LCBL is 30 ℃, and LCBL is fractured on long-span continuous beam, the maximal additional longitudinal forces of rail and slab are 155.75 kN and 233.21 kN respectively.The influence of LCBL fracture on the additional longitudinal forces of rail and slab are significant.When the temperature reduction of LCBL does not exceed 10 ℃, no matter LCBL is fractured at any position on long-span continuous beam, the longitudinal relative displacement between slab and LCBL is less than 0.5 mm, and mortar can't crack.When the temperature reduction of LCBL is 50 ℃, the maximal additional longitudinal force of fixed support caused by LCBL fracture at any position on long-span continuous beam is 196.12 kN, bridge fixed support can't be destroyed directly by LCBL fracture.When the maintenance operation of LCBL is carried out, it is recommended that the temperature difference between sawing and laid LCBL can't exceed 10 ℃, and rail strength must be checked out to meet the requirements.

     

  • loading
  • [1]
    FANG Li. WANG Zhi-qiang, LI Cheng-hui. Analysis on influencing factors of braking force of CRTSⅡballastless track slab on simply-supported beam bridges[J]. Journal of the China Railway Society, 2012, 34(1): 72-76. (in Chinese). doi: 10.3969/j.issn.1001-8360.2012.01.013
    [2]
    CAI Xiao-pei, GAO Liang, SUN Han-wu, et al. Analysis on the mechanical properties of longitudinally connected ballastless track continuously welded rail on bridge[J]. China Railway Science, 2011, 32(6): 28-33. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201106006.htm
    [3]
    ZHENG Xian-qi. Construction technology of sliding layer and extruded sheet upon bridge of CRTS-fl slab ballastless track[J]. Railway Standard Design, 2012(8): 12-15. (in Chinese). doi: 10.3969/j.issn.1004-2954.2012.08.004
    [4]
    WANG Ping, XU Hao, CHEN Rong, et al. Effects analysis of cracking of CRTSⅡslab track on subgrade[J]. Journal of Southwest Jiaotong University, 2012, 47(6): 929-934. (in Chinese). doi: 10.3969/j.issn.0258-2724.2012.06.004
    [5]
    XU Hao, XIE Kai-ze, CHEN Rong, et al. Influence on track slab caused by crack and repairing material at wide juncture of CRTS-Ⅱslab-type track[J]. Railway Standard Design, 2012(7): 30-32, 37. (in Chinese). doi: 10.3969/j.issn.1004-2954.2012.07.008
    [6]
    RUGE P, BIRK C. Longitudinal forces in continuously welded rails on bridge decks due to nonlinear track-bridge interaction[J]. Computers and Structures, 2007, 85(7/8): 458-475.
    [7]
    SONG M K, NOH H C, CHOI C K. A new three-dimensional finite element analysis model of high-speed train-bridge interactions[J]. Engineering Structures, 2003, 25(13): 1611-1626. doi: 10.1016/S0141-0296(03)00133-0
    [8]
    YAN Bin, DAI Gong-lian, DONG Lin-yu. Design parameters of track-bridge interaction on passenger dedicated line cablestayed bridge[J]. Journal of Traffic and Transportation Engineering, 2012, 12(1): 31-37. (in Chinese). doi: 10.3969/j.issn.1671-1637.2012.01.006
    [9]
    ZHENG Peng-fei, YAN Bin, DAI Gong-lian. Rail broken gap study on continuous welded rail on cable-stayed bridge of high-speed railway[J]. Journal of Huazhong University of Science and Technology; Natural Science Edition, 2012, 40(9): 85-88. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201209020.htm
    [10]
    XU Qing-yuan, WANG Ping, QU Xiao-hui. Computation model of rupture force between continuously welded rail and high-speed railway bridge[J]. Journal of Traffic and Transportation Engineering, 2006, 6(3): 23-26. (in Chinese). doi: 10.3321/j.issn:1671-1637.2006.03.006
    [11]
    REN Juan-juan, WANG Ping, LIU Xue-yi. Influencing factors of temperature force and displacement of longitudinally coupled ballastless welded turnout on bridges of dedicated passenger lines[J]. Journal of the China Railway Society, 2011, 33(2): 79-85. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201102020.htm
    [12]
    REN Juan-juan, WANG Ping, LI Pei-gang, et al. Influence of the accidental loading on the force and displacement of longitudinal coupled slab track with seamless turnout on bridges[J]. China Railway Science, 2011, 32(1): 41-47. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201101010.htm
    [13]
    XU Qing-yuan, ZHANG Xu-jiu. Longitudinal forces characteristic of Bogl longitudinal connected ballastless track on highspeed railway bridge[J]. Journal of Central South University: Science and Technology, 2009, 40(2): 526-532. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD200902048.htm
    [14]
    CHEN Xiao-ping. Calculation of longitudinal connected slab reinforcement considering expansion and contraction of bridge[J]. Journal of Southwest Jiaotong University, 2012, 47(5): 754-760. (in Chinese).
    [15]
    CHEN Xiao-ping. Analysis on influencing factors of additional expansion and contraction forces between CRTSⅡ slab ballastless track and long-span continuous beam bridge[J]. Journal of Fuzhou University, Natural Science Edition, 2012, 40(3): 383-387. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FZDZ201203019.htm
    [16]
    LIU Xiao-gang, FAN Jian-sheng, NIE Jian-guo, et al. Behavior of composite rigid frame bridge under bi-directional seismic excitations[J]. Journal of Traffic and Transportation Engineering: English Edition, 2014, 1(1): 62-71.

Catalog

    Article Metrics

    Article views (868) PDF downloads(680) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return