CHU Xiu-min, LIU Tong, MA Feng, LIU Xing-long, ZHONG Ming. Distribution characteristic of AIS signal field intensity along mountainous waterway[J]. Journal of Traffic and Transportation Engineering, 2014, 14(6): 117-126.
Citation: CHU Xiu-min, LIU Tong, MA Feng, LIU Xing-long, ZHONG Ming. Distribution characteristic of AIS signal field intensity along mountainous waterway[J]. Journal of Traffic and Transportation Engineering, 2014, 14(6): 117-126.

Distribution characteristic of AIS signal field intensity along mountainous waterway

More Information
  • Author Bio:

    CHU Xiu-min (1969-), male, researcher, PhD, +86-27-86581899, chuxm@whut.edu.cn.

  • Received Date: 2014-07-03
  • Publish Date: 2014-12-25
  • Due to the shadowing effect of AIS mountains signals, there were many blind areas along mountainous waterways limiting the application of AIS.Okumura-Hata model was used to study the reliability of AIS communication system in those areas.29 test points, which were primarily served by three base stations at Bahekou, Shipai, and Xiba located along the Three Gorges Dam segment, were set.Among the 29 test points, 13 test points were in mountainous areas and 16 test points were in open areas.The actual field intensities of the 29 test points were measured and compared with theoretical field intensities.A linear regression model was used to optimize the corrected parameter of Okumura-Hata model.The correcting field intensities at the 13 test points in mountainous areas and at 9 out of 16 test points in open areas, having a distancegreater than 2.9 km from the base stations, were calculated.In order to verify the correctness of modified model, verification test was carried out for 6 test points along Chongqing—Yongchuan segment.Analysis result indicates that a distance of 3 km is a critical threshold for AIS signal transmission.When the propagation distance is less than 3 km, the AIS signal is good and the AIS field intensity curve is smooth.However, when the propagation distance is more than 3 km, the AIS signal quality reduces sharply and the curve is steep.The distribution trend of theoretical field intensity calculated by Okumura-Hata model is consistent with that of actual field intensity, but there are still gaps between the theoretical values and the actual values.In verification test, the average values of actual field intensity, theoretical field intensity, and correcting field intensity at 6 test points are-106.636, -100.982, -107.710 dBm, respectively.The average error and precision rate of calculated result of Okumura-Hata model are 5.654 dBm and 94.615% respectively, and the values of correcting model are 1.071 dBm and 98.329% respectively.

     

  • loading
  • [1]
    YAN Zhong-zhen, YAN Xin-ping, MA Feng, et al. Green Yangtze River intelligent shipping information system and its key technologies[J]. Journal of Transport Information and Safety, 2010, 28 (6): 76-81. (in Chinese). doi: 10.3963/j.ISSN1674-4861.2010.06.021
    [2]
    MA Feng, YAN Xin-ping, CHU Xiu-min. Research on automatic identify system performance with hardware-in-the-loop simulation[J]. Journal of System Simulation, 2013, 25 (6): 1315-1320. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201306029.htm
    [3]
    TAO Li-min, XU Chang-ru. Study of the AIS netting[J]. Marine Technology, 2004 (4): 31-33. (in Chinese). doi: 10.3969/j.issn.1006-1738.2004.04.018
    [4]
    VESECKY J F, LAWS K E, PADUAN J D. Using HF surface wave radar and the ship automatic identification system (AIS) to monitor coastal vessels[C]∥IEEE. 2009IEEE International Geoscience and Remote Sensing Symposium. Cape Town: IEEE, 2009: 761-764.
    [5]
    LARSEN J A, MORTENSEN H P, NIELSEN J D. An SDR based AIS receiver for satellites[C]∥IEEE. 2011 5 th International Conference on Recent Advances in Space Technologies (RAST). Istanbul: IEEE, 2011: 526-531.
    [6]
    MA Feng, CHU Xiu-min, YAN Xin-ping. Short message characteristics of AIS base stations[J]. Journal of Traffic and Transportation Engineering, 2012, 12 (6): 111-118. (in Chinese). doi: 10.3969/j.issn.1671-1637.2012.06.017
    [7]
    MA Feng, CHU Xiu-min, YAN Xin-ping. Self-adaptive transmission power adjustment technology for inland river AIS terminals[J]. Navigation of China, 2013, 36 (1): 28-34. (in Chinese). doi: 10.3969/j.issn.1000-4653.2013.01.007
    [8]
    MA Feng, YAN Xin-ping, CHU Xiu-min, et al. Correlation between signal failure and field strength in automatic identify system[J]. Journal of Dalian Maritime University, 2011, 37 (3): 111-114. (in Chinese). doi: 10.3969/j.issn.1671-7031.2011.03.028
    [9]
    SONG Cheng-guo. Research of the inland waterway aids to navigation layout simulation based on virtual reality[D]. Wuhan: Wuhan University of Technology, 2012. (in Chinese).
    [10]
    WANG Zu-liang, FAN Wen-sheng, ZHENG Lin-hua. Study and simulation on sea-surface propagation prediction model[J]. Chinese Journal of Radio Science, 2008, 23 (6): 1095-1099. (in Chinese). doi: 10.3969/j.issn.1005-0388.2008.06.015
    [11]
    WU Qing, CUI Jian-ping, MA Feng, et al. Research of monitoring scope of inland AIS base station based on Okumura-Hata model[J]. Journal of Wuhan University of Technology: Information and Management Engineering, 2011, 33 (1): 36-39. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WHQC201101010.htm
    [12]
    HU Hui-bin. Prediction study on the algorithm of radio waves propagation characteristics under complicated environment[D]. Changsha: National University of Defense Technology, 2006. (in Chinese).
    [13]
    HASEGAEA K, NIWA K, MORI S, et al. Simulation-based master plan design and its safety assessment for congested waterways managements[C]∥Shanghai Jiaotong University. 2 nd International Maritime Conference on Design for Safety. Shanghai: Shanghai Jiaotong University, 2004: 265-269.
    [14]
    HATA K, HASEGAWA K, NIWA K, et al. AIS simulator and ITS applications[C]∥IEEE. 48 th International Symposium ELMAR-2006. Zadar: IEEE, 2006: 223-226.
    [15]
    YAN Yan, WANG Qiang, DU Zheng-wei. UMB signal indoor electric field distribution[J]. Application of Electronic Technique, 2005, 31 (9): 54-57. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DZJY200509019.htm
    [16]
    WU He-hai. Study of mathematic model for fitting S shape distributed data[J]. Geomatics and Information Science of Wuhan University, 2009, 34 (4): 474-478. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH200904024.htm
    [17]
    WU He-hai. Automatic determination of inflection point and its applications[J]. Geomatics and Information Science of Wuhan University, 2003, 28 (3): 330-335. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH200303014.htm
    [18]
    SUN Xing, WU Yong, CHU Xiu-min. Intelligent Yangtze River shipping and ITS prospects based on coordination of ship-markbank[J]. Journal of Transport Information and Safety, 2010, 28 (6): 48-52, 56. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS201006016.htm
    [19]
    XU Jian-min, LIN Si, JIAO Guang-ting, et al. ITS architecture of general communications[J]. Journal of Transport Information and Safety, 2009, 27 (2): 1-4, 50. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS200902003.htm
    [20]
    JI Zhong, LI Bin-hong, WANG Hao-xing, et al. An effective propagation estimation model for indoor radio communications using ray tracing technique[J]. Journal of Shanghai Jiaotong University, 2000, 34 (2): 276-280. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT200002031.htm

Catalog

    Article Metrics

    Article views (788) PDF downloads(740) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return