Citation: | NING Hang, NAN Chun-li, YANG Lan, ZHAO Xiang-mo, LIU Hao-xue, ZHOU Dan. Anomaly detection of automobile braking curves[J]. Journal of Traffic and Transportation Engineering, 2018, 18(6): 82-92. doi: 10.19818/j.cnki.1671-1637.2018.06.009 |
[1] |
赵英勋. 滚筒反力式制动试验台制动力检测分析[J]. 中国测试, 2015, 41 (4): 10-13. https://www.cnki.com.cn/Article/CJFDTOTAL-SYCS201504003.htm
ZHAO Ying-xun. Detection and analysis of brake force based on roller opposite-force brake tester[J]. China Measurement and Test, 2015, 41 (4): 10-13. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SYCS201504003.htm
|
[2] |
马文耀, 吴兆麟, 李伟峰. 船舶异常行为的一致性检测算法[J]. 交通运输工程学报, 2017, 17 (5): 149-158. doi: 10.3969/j.issn.1671-1637.2017.05.014
MA Wen-yao, WU Zhao-lin, LI Wei-feng. Conformal detection algorithm of anomalous behaviors of vessel[J]. Journal of Traffic and Transportation Engineering, 2017, 17 (5): 149-158. (in Chinese). doi: 10.3969/j.issn.1671-1637.2017.05.014
|
[3] |
周东华, 魏慕恒, 司小胜. 工业过程异常检测、寿命预测与维修决策的研究进展[J]. 自动化学报, 2013, 39 (6): 711-722. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201306005.htm
ZHOU Dong-hua, WEI Mu-heng, SI Xiao-sheng. A survey on anomaly detection, life prediction and maintenance decision for industrial processes[J]. Acta Automatica Sinica, 2013, 39 (6): 711-722. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201306005.htm
|
[4] |
姚欣歆, 刘英博, 赵炯, 等. 面向设备群体的工况数据异常检测方法[J]. 计算机集成制造系统, 2013, 19 (12): 2993-3001. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJJ201312010.htm
YAO Xin-xin, LIU Ying-bo, ZHAO Jiong, et al. Device group-oriented method for abnormal floor data detecting[J]. Computer Integrated Manufacturing Systems, 2013, 19 (12): 2993-3001. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJJ201312010.htm
|
[5] |
严英杰, 盛戈皞, 陈玉峰, 等. 基于大数据分析的输变电设备状态数据异常检测方法[J]. 中国电机工程学报, 2015, 35 (1): 52-59. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201501008.htm
YAN Ying-jie, SHENG Ge-hao, CHEN Yu-feng, et al. An method for anomaly detection of state information of power equipment based on big data analysis[J]. Proceedings of the CSEE, 2015, 35 (1): 52-59. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201501008.htm
|
[6] |
陶涛, 周喜, 马博, 等. 基于双向LSTM的Seq2Seq模型在加油站时序数据异常检测中的应用[J]. 计算机应用, 2018: 1-7, DOI: 10.11772/j.issn.1001-9081.2018081681.TA.
O Tao, ZHOU Xi, MA Bo, et al. Detecting abnormal time series data of gas station utilizing Seq2Seq model based on bi-LSTM[J]. Journal of Computer Applications, 2018: 1-7, DOI: 10.11772/j.issn.1001-9081.2018081681.(in Chinese).
|
[7] |
史斌, 姜继平, 王鹏. 基于高频在线水质数据异常的突发污染预警[J]. 中国环境科学, 2017, 37 (11): 4394-4400. doi: 10.3969/j.issn.1000-6923.2017.11.046
SHI Bin, JIANG Ji-ping, WANG Peng. Early warning of water pollution incidents based on abnormal change of water quality data from high frequency online monitoring[J]. China Environmental Science, 2017, 37 (11): 4394-4400. (in Chinese). doi: 10.3969/j.issn.1000-6923.2017.11.046
|
[8] |
BAO Yue-quan, TANG Zhi-yi, LI Hui, et al. Computer vision and deep learning-based data anomaly detection method for structural health monitoring[J]. Structural Health Monitoring, 2018: 1-21, DOI: 10.1177/1475921718757405.
|
[9] |
尚文利, 张盛山, 万明, 等. 基于PSO-SVM的Modbus TCP通讯的异常检测方法[J]. 电子学报, 2014, 42 (11): 2314-2320. doi: 10.3969/j.issn.0372-2112.2014.11.029
SHANG Wen-li, ZHANG Sheng-shan, WAN Ming, et al. Modbus/TCP communication anomaly detection algorithm based on PSO-SVM[J]. Acta Electronica Sinica, 2014, 42 (11): 2314-2320. (in Chinese). doi: 10.3969/j.issn.0372-2112.2014.11.029
|
[10] |
王德文, 杨力平. 智能电网大数据流式处理方法与状态监测异常检测[J]. 电力系统自动化, 2016, 40 (14): 122-128. doi: 10.7500/AEPS20150828001
WANG De-wen, YANG Li-ping. Stream processing method and condition monitoring anomaly detection for big data in smart grid[J]. Automation of Electric Power Systems, 2016, 40 (14): 122-128. (in Chinese). doi: 10.7500/AEPS20150828001
|
[11] |
余宇峰, 朱跃龙, 万定生, 等. 基于滑动窗口预测的水文时间序列异常检测[J]. 计算机应用, 2014, 34 (8): 2217-2220, 2226. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201408018.htm
YU Yu-feng, ZHU Yue-long, WAN Ding-sheng, et al. Time series outlier detection based on sliding window prediction[J]. Journal of Computer Applications, 2014, 34 (8): 2217-2220, 2226. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201408018.htm
|
[12] |
张忠林, 周晓侠. 基于滑动窗口聚类的时序关联规则挖掘方法[J]. 计算机工程与设计, 2014, 35 (4): 1408-1413. doi: 10.3969/j.issn.1000-7024.2014.04.055
ZHANG Zhong-lin, ZHOU Xiao-xia. Method of mining sequential association rules based on clustering of sliding window[J]. Computer Engineering and Design, 2014, 35 (4): 1408-1413. (in Chinese). doi: 10.3969/j.issn.1000-7024.2014.04.055
|
[13] |
刘子豪, 李凌, 叶枫. 基于SparkR的水文传感器数据的异常检测方法[J]. 计算机应用, 2018: 1-6, DOI:10.11772/j.issn.1001-9081.2018081782.
LIU Zi-hao, LI Ling, YE Feng. Anomaly detection method for hydrologic sensor data based on SparkR[J]. Journal of Computer Applications, 2018: 1-6, DOI:10.11772/j.issn.1001-9081.2018081782.(in Chinese).
|
[14] |
李海林, 邬先利. 基于频繁模式发现的时间序列异常检测方法[J]. 计算机应用, 2018, 38 (11): 3204-3210. doi: 10.11772/j.issn.1001-9081.2018041252
LI Hai-lin, WU Xian-li. Time series anomaly detection method based on frequent pattern discovery[J]. Journal of Computer Applications, 2018, 38 (11): 3204-3210. (in Chinese). doi: 10.11772/j.issn.1001-9081.2018041252
|
[15] |
LI Guang, WANG Jie, LIANG Jing, et al. Application of sliding nest window control chart in data stream anomaly detection[J]. Symmetry, 2018, 10 (4): 1-13.
|
[16] |
费欢, 肖甫, 李光辉, 等. 基于多模态数据流的无线传感器网络异常检测方法[J]. 计算机学报, 2017, 40 (8): 1829-1842. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201708007.htm
FEI Huan, XIAO Fu, LI Guang-hui, et al. An anomaly detection method of wireless sensor network based on multimodals data stream[J]. Chinese Journal of Computers, 2017, 40 (8): 1829-1842. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201708007.htm
|
[17] |
DING Zhi-guo, FEI Min-rui. An anomaly detection approach based on isolation forest algorithm for streaming data using sliding window[J]. IFAC Proceedings Volumes, 2013, 46 (20): 12-17. doi: 10.3182/20130902-3-CN-3020.00044
|
[18] |
王桂兰, 周国亮, 赵洪山, 等. 大规模用电数据流的快速聚类和异常检测技术[J]. 电力系统自动化, 2016, 40 (24): 27-33. doi: 10.7500/AEPS20160123002
WANG Gui-lan, ZHOU Guo-liang, ZHAO Hong-shan, et al. Fast clustering and anomaly detection technique for large-scale power data stream[J]. Automation of Electric Power Systems, 2016, 40 (24): 27-33. (in Chinese). doi: 10.7500/AEPS20160123002
|
[19] |
AGHABOZORGI S, SHIRKHORSHIDI A S, WAH T Y. Time-series clustering-a decade review[J]. Information Systems, 2015, 53: 16-38. doi: 10.1016/j.is.2015.04.007
|
[20] |
FAHAD A, ALSHATRI N, TARI Z, et al. A survey of clustering algorithms for big data: taxonomy and empirical analysis[J]. IEEE Transactions on Emerging Topics in Computing, 2014, 2 (3): 267-279. doi: 10.1109/TETC.2014.2330519
|
[21] |
FAROUGHI A, JAVIDAN R. CANF: Clustering and anomaly detection method using nearest and farthest neighbor[J]. Future Generation Computer Systems, 2018, 89: 166-177. doi: 10.1016/j.future.2018.06.031
|
[22] |
JAIN B J. The mean partition theorem in consensus clustering[J]. Pattern Recognition, 2018, 79: 427-439. doi: 10.1016/j.patcog.2018.01.030
|
[23] |
ISMKHAN H. I-k-means-plus: An iterative clustering algorithm based on an enhanced version of the K-means[J]. Pattern Recognition, 2018, 79: 402-413. doi: 10.1016/j.patcog.2018.02.015
|
[24] |
RODRIGUEZ A, LAIO A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344: 1492-1496. doi: 10.1126/science.1242072
|
[25] |
田力, 向敏. 基于密度聚类技术的电力系统用电量异常分析算法[J]. 电力系统自动化, 2017, 41 (5): 64-70. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXT201705010.htm
TIAN Li, XIANG Min. Abnormal power consumption analysis based on density-based spatial clustering of applications with noise in power system[J]. Automation of Electric Power Systems, 2017, 41 (5): 64-70. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DLXT201705010.htm
|
[26] |
庄池杰, 张斌, 胡军, 等. 基于无监督学习的电力用户异常用电模式检测[J]. 中国电机工程学报, 2016, 36 (2): 379-387. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201602008.htm
ZHUANG Chi-jie, ZHANG Bin, HU Jun, et al. Anomaly detection for power consumption patterns based on unsupervised learning[J]. Proceedings of the CSEE, 2016, 36 (2): 379-387. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201602008.htm
|
[27] |
PURARJOMANDLANGRUDI A, GHAPANCHI A H, ESMALIFALAK M. A data mining approach for fault diagnosis: an application of anomaly detection algorithm[J]. Measurement, 2014, 55: 343-352. doi: 10.1016/j.measurement.2014.05.029
|
[28] |
RANSHOUS S, SHEN S, KOUTRA D, et al. Anomaly detection in dynamic networks: a survey[R]. Hoboken: Wiley Periodicals, Inc., 2015.
|
[29] |
THEISSLER A. Detecting known and unknown faults in automotive systems using ensemble-based anomaly detection[J]. KnowledgeBased Systems, 2017, 123: 163-173.
|
[30] |
LI Guang-hui, LU Wen-wei, FENG Hai-lin. Outlier detection methods based on neural network in wireless sensor networks[J]. Computer Science, 2014, 41 (11A): 208-211.
|
[31] |
PANDEESWARI N, KUMAR G. Anomaly detection system in cloud environment using fuzzy clustering based ANN[J]. Mobile Networks and Applications, 2016, 21: 494-505.
|
[32] |
WU Jia, ZENG Wei-ru, YAN Fei. Hierarchical temporal memory method for time-series-based anomaly detection[J]. Neurocomputing, 2018, 273: 535-546.
|