-
摘要: 为了研究中国北方寒冷地区机场道面混凝土冻融破坏的评价指标, 制作了3种不同抗冻性能的混凝土试件, 采用快速冻融试验机对混凝土试件进行了冻融破坏试验, 并用动弹仪DT-10W测试了试件的动弹性模量, 分析了不同冻融循环次数作用下试件相对动弹性模量、压折强度、质量损失及表面剥落的变化规律, 给出了机场道面混凝土冻融破坏的临界值。试验结果表明: 随着冻融循环次数的增加, 试件的压折强度均有不同程度的下降, 其中抗折强度的损失较大, 且试件表面剥落面积及深度增大, 质量损失对试件表面平整度的影响严重。根据试件在冻融过程中相对动弹性模量与抗折强度损失、表面剥落与质量损失的规律, 建议以300次快速冻融循环后混凝土试件相对动弹性模量不小于75% (抗折强度损失率不大于46%) 和质量损失率小于1.0% (中等剥落) 作为机场道面混凝土冻融破坏的评价指标。Abstract: In order to research the evaluation indices of freezing-thawing destruction for airfield runway concrete in north cold area of China, three concrete examples with anti-freezing capability were made, and their freezing-thawing devastating experiment was done by rapid freezing experimental machine. Their dynamic moduli of elasticity were measured by DT-10W, and the changing rules of relative dynamic moduli of elasticity, flexural strength losses, concrete mass losses and surface scale-offs under different freezing-thawing cycles were analyzed.The critical value of freezing-thawing destruction was presented for airfield runway concrete. Experimental result indicates that as freezing-thawing cycles accumulate, the compressive and flexural strengthes decline at different rates for the samples, of which the flexural strengthes lose more faster.The surface scaling areas and depthes of concretes become serious and mass losses have severe influence on the surface smoothnesses of the samples. According to the rules, the evaluation indices are put forward after 300 freezing-thawing cycles, which is that relative dynamic modulus of elasticity is less than 75% (flexural strength loss ratio is not more than 46%) and mass loss ratio is less than 1.0% (moderate surface scale-off).
-
表 1 混凝土配合比与抗折强度试验结果
Table 1. Experimental results of mixing ratios and flexural strengthes of concretes
表 2 PT混凝土抗冻试验结果
Table 2. Freezing-thawing test result of PT
表 3 YJ07混凝土抗冻试验结果
Table 3. Freezing-thawing test result o fYJ07
表 4 YJ15混凝土抗冻试验结果
Table 4. Freezing-thawing test result of YJ15
表 5 机场起降架次统计
Table 5. Statistics of flight sorties
表 6 机场道面表面剥落评定标准
Table 6. Scale-off standard of airport pavement surface
-
[1] 商怀帅, 宋玉普, 覃丽坤. 普通混凝土冻融循环后性能的试验研究[J]. 混凝土与水泥制品, 2005 (2): 9-11. https://www.cnki.com.cn/Article/CJFDTOTAL-HNTW200502002.htmSHANG Huai-shuai, SONG Yu-pu, TAN Li-kun. Experimental study on the performance of plain concrete after freezing-thawing test[J]. China Concrete and Cement Products, 2005 (2): 9-11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNTW200502002.htm [2] 杨绍明, 周双喜. 混凝土抗冻性试验方法及其评价参数的探讨[J]. 混凝土, 2008 (4): 27-28, 41. https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF200804009.htmYANG Shao-ming, ZHOU Shuang-xi. Discussion on test methods about freeze-thaw resistance of concrete and its appraising parameters[J]. Concrete, 2008 (4): 27-28, 41. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF200804009.htm [3] 洪锦祥, 黄卫, 缪昌文, 等. 对路面混凝土抗冻性试验和评价方法的探讨[J]. 公路交通科技, 2006, 23 (7): 14-18. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200607003.htmHONG Jin-xiang, HUANG Wei, MI AO Chang-wen, et al. Discussion on the methods of freezing-thawing test and evaluation of pavement concrete[J]. Journal of Highway andTransportation Research and Development, 2006, 23 (7): 14-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200607003.htm [4] 邹超英, 赵娟, 梁锋, 等. 冻融作用后混凝土力学性能的衰减规律[J]. 建筑结构学报, 2008, 29 (1): 117-123, 138. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB200801017.htmZOU Chao-ying, ZHAOJuan, LIANG Feng, et al. Degradation of mechanical properties of concrete caused by freeze-thaw action[J]. Journal of Building Structure, 2008, 29 (1): 117-123, 138. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB200801017.htm [5] 李金玉, 彭小平, 邓正刚, 等. 混凝土抗冻性的定量化设计[J]. 混凝土, 2000 (12): 61-65. https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF200012015.htmLI Jin-yu, PENG Xiao-ping, DENG Zheng-gang, et al. Quantitative design on the frost-resistance of concrete[J]. Concrete, 2000 (12): 61-65. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF200012015.htm [6] 杨英姿, 赵亚丁, 巴恒静. 关于混凝土抗冻性试验方法的讨论[J]. 低温建筑技术, 2006 (5): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-DRAW200605000.htmYANG Ying-zi, ZHAO Ya-ding, BA Heng-jing. Discussion on test methods of frost resistance of concrete[J]. Low Temperature Construction Technology, 2006 (5): 1-4. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DRAW200605000.htm [7] 赵霄龙, 卫军, 黄玉盈. 混凝土冻融耐久性劣化的评价指标对比[J]. 华中科技大学学报: 自然科学版, 2003, 31 (2): 103-105. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG200302035.htmZHAO Xiao-long, WEI Jun, HUANG Yu-ying. The comparison of evaluation indexes for durability degration of concrete in freezing-thawing cycles[J]. Journal of Huazhong University of Science and Technology: Nature Science Edition, 2003, 31 (2): 103-105. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG200302035.htm [8] SHANG Huai-shuai, SONG Yu-pu. Behavior of air-entrained concrete under the compression with constant confined stress after freeze-thawcycles[J]. Cement and Concrete Composites, 2008, 30 (9): 854-860. [9] 王选仓, 侯荣国. 长寿命路面结构设计[J]. 交通运输工程学报, 2007, 7 (6): 46-49. http://transport.chd.edu.cn/article/id/200706009WANG Xuan-cang, HOU Rong-guo. Structure design of long-life pavement[J]. Journal of Traffic and Transportation Engineering, 2007, 7 (6): 46-49. (in Chinese) http://transport.chd.edu.cn/article/id/200706009 [10] 贺东青, 卢哲安, 任志刚, 等. 冻融疲劳作用下LHFRC损伤演变规律[J]. 武汉理工大学学报, 2007, 29 (7): 92-94, 129. https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY200707024.htmHE Dong-qing, LU Zhe-an, REN Zhi-gang, et al. Research on the damage evolution for LHFRC subjected to freeze-thaw cycles[J]. Journal of Wuhan University of Technology, 2007, 29 (7): 92-94, 129. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY200707024.htm