留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速铁路系杆拱桥先拱后梁施工仿真与监测

任文峰 王星华 涂鹏

任文峰, 王星华, 涂鹏. 高速铁路系杆拱桥先拱后梁施工仿真与监测[J]. 交通运输工程学报, 2012, 12(5): 28-36. doi: 10.19818/j.cnki.1671-1637.2012.05.004
引用本文: 任文峰, 王星华, 涂鹏. 高速铁路系杆拱桥先拱后梁施工仿真与监测[J]. 交通运输工程学报, 2012, 12(5): 28-36. doi: 10.19818/j.cnki.1671-1637.2012.05.004
REN Wen-feng, WANG Xing-hua, TU Peng. Simulation and monitoring of high-speed railway tied-arch bridge construction with arch first and beam late method[J]. Journal of Traffic and Transportation Engineering, 2012, 12(5): 28-36. doi: 10.19818/j.cnki.1671-1637.2012.05.004
Citation: REN Wen-feng, WANG Xing-hua, TU Peng. Simulation and monitoring of high-speed railway tied-arch bridge construction with arch first and beam late method[J]. Journal of Traffic and Transportation Engineering, 2012, 12(5): 28-36. doi: 10.19818/j.cnki.1671-1637.2012.05.004

高速铁路系杆拱桥先拱后梁施工仿真与监测

doi: 10.19818/j.cnki.1671-1637.2012.05.004
基金项目: 

国家自然科学基金项目 59979001

湖南省科技厅重点项目 04SK2008

详细信息
    作者简介:

    任文峰(1976-), 男, 江苏丰县人, 中交路桥建设有限公司高级工程师, 中南大学工学博士研究生, 从事高速铁路设计与施工研究

    王星华(1957-), 男, 湖南长沙人, 中南大学教授, 工学博士

  • 中图分类号: U445.4

Simulation and monitoring of high-speed railway tied-arch bridge construction with arch first and beam late method

More Information
  • 摘要: 以京沪高铁青阳港系杆拱桥为研究对象, 通过有限元仿真分析及现场监测, 计算了高速铁路先拱后梁系杆拱桥不同施工工序下拱肋、吊杆的应力、应变, 分析了施工过程中拱肋、吊索的变化规律及施工控制要点。计算结果表明: 有限元模拟得出拱肋最大变形为37mm, 拱肋压应力最大值出现在系梁合拢后临时固结解除前; 拱肋各点标高的实际测量值和理论计算值的变化规律完全一致, 测量值和理论值的差值均不大于10mm; 主拱架各点所受压应力比较均匀, 均小于80MPa。可见, 采用整体抬吊拱肋及先拱后梁的施工方法可行。

     

  • 图  1  空间梁单元

    Figure  1.  Spatial beam element

    图  2  空间直索单元

    Figure  2.  Spatial straight cable element

    图  3  拱桥吊杆与拱肋标高监测点编号

    Figure  3.  Serial numbers of suspenders and arch rib elevation monitoring points for arch bridge

    图  4  拱桥上部结构

    Figure  4.  Upper structure of arch bridge

    图  5  空间有限元计算模型

    Figure  5.  Space finite element calculation model

    图  6  合拢后左幅拱肋坐标偏差

    Figure  6.  Coordinate deviations of left ribs after being closed

    图  7  主体结构完成后左幅拱肋坐标偏差

    Figure  7.  Coordinate deviations of left ribs after completion of main structure

    表  1  左幅拱肋标高监测结果

    Table  1.   Monitoring results of left rib elevations m

    点号 主拱架设完毕 拱肋砼浇筑完毕 2号系梁完成 4号系梁完成 合拢后 主体结束后
    计算值 实测值 计算值 实测值 计算值 实测值 计算值 实测值 计算值 实测值 计算值 实测值
    1(拱脚) 20.904 20.908 20.904 20.905 20.904 20.903 20.904 20.906 20.904 20.908 20.903 20.905
    2 25.599 25.604 25.595 25.601 25.590 25.591 25.585 25.588 25.585 25.589 25.587 25.591
    3 29.206 29.211 29.198 29.204 29.194 29.199 29.188 29.190 29.185 29.182 29.190 29.188
    4 31.764 31.766 31.755 31.758 31.751 31.748 31.742 31.748 31.737 31.744 31.740 31.745
    5 33.266 33.268 33.253 33.257 33.252 33.254 33.242 33.248 33.232 33.238 33.244 33.248
    6(跨中) 33.757 33.762 33.742 33.746 33.743 33.739 33.732 33.728 33.720 33.715 33.733 33.727
    7 33.231 33.236 33.218 33.223 33.217 33.220 33.207 33.212 33.197 33.191 33.209 33.204
    8 31.694 31.699 31.685 31.687 31.681 31.687 31.672 31.678 31.667 31.668 31.670 31.668
    9 29.100 29.103 29.092 29.095 29.088 29.089 29.082 29.085 29.079 29.082 29.084 29.087
    10 25.458 25.461 25.454 25.457 25.449 25.447 25.444 25.440 25.444 25.440 25.446 25.447
    11(拱脚) 20.728 20.732 20.728 20.727 20.728 20.727 20.728 20.732 20.728 20.732 20.727 20.730
    下载: 导出CSV

    表  2  左幅拱肋内力监测结果

    Table  2.   Monitoring results of left rib forces MPa

    位置 拱肋架设完毕 拱肋砼浇筑完毕 2号系梁完成后 4号系梁完成后 合拢后 主体结构完毕
    实测 理论 实测 理论 实测 理论 实测 理论 实测 理论 实测 理论
    东拱脚上 -5.88 -5.25 -30.24 -27.51 -12.29 -10 -22.34 -15 -35.21 -26 -49.98 -56
    东拱脚下 -6.51 -6.30 -26.88 -27.51 -63.37 -72 -93.52 -95 -98.18 -100 -88.11 -80
    3/4截面上 -5.25 -4.83 -24.78 -27.30 -33.18 -47 -40.95 -56 -55.09 -61 -55.77 -62
    3/4截面下 -4.20 -5.04 -26.04 -24.36 -23.52 -20 -38.22 -38 -49.81 -55 -51.64 -61
    拱顶上 -5.46 -5.04 -24.15 -24.15 -33.39 -28 -62.37 -46 -73.49 -67 -72.19 -65
    拱顶下 -4.20 -5.04 -23.10 -24.15 -33.12 -31 -39.98 -36 -45.04 -38 -49.06 -45
    西拱脚上 -6.09 -5.25 -25.62 -27.51 -9.20 -10 -17.33 -15 -23.23 -26 -53.75 -56
    西拱脚下 -5.88 -6.30 -28.98 -27.51 -75.10 -72 -91.82 -95 -98.04 -100 -87.33 -80
    下载: 导出CSV

    表  3  左幅吊杆索力监测结果

    Table  3.   Monitoring results of left suspender cable forces

    吊杆编号 第1次张拉 第2次张拉
    设计值/kN 实测值/kN 差值/kN 设计值/kN 实测值/kN 差值/kN
    1 1 000 965 -35 910 1 010 100
    2 1 300 1 315 15 1 080 1 174 94
    3 800 821 21 1 020 1 071 51
    4 1 100 1 107 7 980 1 060 80
    5 600 628 28 1 050 1 150 100
    6 1 000 1 017 17 1 070 1 088 18
    7 550 576 26 950 964 14
    8 750 770 20 950 987 37
    9 550 575 25 660 720 60
    10 450 455 5 590 642 52
    10′ 450 435 -15 590 642 52
    9′ 550 575 25 660 720 60
    8′ 750 762 12 950 987 37
    7′ 550 575 25 950 964 14
    6′ 1 000 1 033 33 1 070 1 088 18
    5′ 600 628 28 1 050 1 150 100
    4′ 1 100 1 132 32 980 1 060 80
    3′ 800 766 -34 1 020 1 071 51
    2′ 1 300 1 322 22 1 080 1 174 94
    1′ 1 000 992 -8 910 1 010 100
    下载: 导出CSV
  • [1] 彭桂瀚, 董桔灿, 陈宝春. 钢管混凝土系杆拱斜吊杆试设计研究[J]. 福州大学学报: 自然科学版, 2009, 37(4): 560-566. https://www.cnki.com.cn/Article/CJFDTOTAL-FZDZ200904021.htm

    PENG Gui-han, DONG Ju-can, CHEN Bao-chun. Trial-design research on inclined hangers in CFST bow string archbridge[J]. Journal of Fuzhou University: Natural Science Edition, 2009, 37(4): 560-566. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FZDZ200904021.htm
    [2] 贺拴海, 李春风, 吕婷, 等. 钢筋混凝土系杆拱桥稳定性影响参数[J]. 长安大学学报: 自然科学版, 2008, 28(4): 43-46. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200804012.htm

    HE Shuan-hai, LI Chun-feng, LU Ting, et al. Influencing parameters of stability for reinforced concrete tied-arch bridge[J]. Journal of Chang'an University: Natural Science Edition, 2008, 28(4): 43-46. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200804012.htm
    [3] 刘钊. 基于能量法的系杆拱桥最优吊杆内力的确定[J]. 工程力学, 2009, 26(8): 168-173. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200908030.htm

    LIU Zhao. Determination of the optimal hanger forces for tied-arch bridges based on energy methods[J]. Engineering Mechanics, 2009, 26(8): 168-173. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200908030.htm
    [4] GHOLIPOUR A, ARAABI B N, LUCAS C. Predicting cha-otic time series using neural and neurofuzzy models: a com-parative study[J]. Neural Processing Letters, 2006, 24(3): 217-239. doi: 10.1007/s11063-006-9021-x
    [5] 陶慕轩, 聂建国. 预应力钢-混凝土连续组合梁的非线性有限元分析[J]. 土木工程学报, 2011, 44(2): 8-20. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201102005.htm

    TAO Mu-xuan, NIE Jian-guo. Nonlinear finite element analysis of prestressed continuous steel-concrete composite beams[J]. China Civil Engineering Journal, 2011, 44(2): 8-20. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201102005.htm
    [6] 张华. 兰新铁路大跨度系杆拱桥施工[J]. 筑路机械与施工机械化, 2012, 29(3): 67-69. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLJX201203028.htm

    ZHANG Hua. Construction of long-span tied arch bridge of Lanxin Railway[J]. Road Machinery and Construction Mech-anization, 2012, 29(3): 67-69. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZLJX201203028.htm
    [7] 窦超, 郭彦林. 单轴对称截面圆弧拱弹性弯扭屈曲临界荷载[J]. 建筑科学与工程学报, 2011, 28(4): 69-74. https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG201104014.htm

    DOU Chao, GUO Yan-lin. Elastic flexural-torsional buckling load of monosymmetric circular arches[J]. Journal of Archi-tecture and Civil Engineering, 2011, 28(4): 69-74. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG201104014.htm
    [8] 郝建强, 米晧洁. 乌鲁木齐河特大桥简支系杆拱施工监控方案[J]. 筑路机械与施工机械化, 2012, 29(4): 72-75. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLJX201204047.htm

    HAO Jian-qiang, MI Hao-jie. Construction monitoring of simply supported tied arch of Urumqi Large Bridge[J]. Road Machinery and Construction Mechanization, 2012, 29(4): (). https://www.cnki.com.cn/Article/CJFDTOTAL-ZLJX201204047.htm
    [9] 张望喜, 易伟建, 王力力, 等. 连续梁桥拓展多跨双曲拱桥的分析与控制[J]. 建筑科学与工程学报, 2010, 27(1): 25-30. https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG201001007.htm

    ZHANG Wang-xi, YI Wei-jian, WANG Li-li, et al. Analysis and control of multi-span double arch bridge expanded by continu-ous bridge[J]. Journal of Architecture and Civil Engineering, 2010, 27(1): 25-30. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG201001007.htm
    [10] 刘钊, 吕志涛. 竖吊杆与斜吊杆系杆拱结构的桥式研究[J]. 土木工程学报, 2000, 33(5): 63-67. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200005013.htm

    LIU Zhao, LU Zhi-tao. Comparative study on the tied-arch bridges with vertical and inclined hangers[J]. China Civil Engineering Journal, 2000, 33(5): 63-67. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200005013.htm
    [11] 吴建武. 刚构单肋系杆拱组合桥梁空间非线性稳定分析[J]. 武汉理工大学学报, 2008, 30(8): 139-142, 177. https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY200808039.htm

    WU Jian-wu. Three dimension nonlinear stability analysis of the combinational bridges with rigid frame and single-ribbed tied arch[J]. Journal of Wuhan University of Technology, 2008, 30(8): 139-142, 177. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY200808039.htm
    [12] 陈淮, 吴红升, 唐军. 蒲山系杆拱桥吊杆张拉力的空间计算分析[J]. 铁道科学与工程学报, 2008, 5(2): 12-16. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD200802004.htm

    CHEN Huai, WU Hong-sheng, TANG Jun. Spatial analysis of suspender tensile force for the Pushan CFST through arch bridge[J]. Journal of Railway Science and Engineering, 2008, 5(2): 12-16. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD200802004.htm
    [13] 周德, 叶梅新, 罗如登. 高速铁路下承式钢箱系杆拱结合桥的受力分析[J]. 中南大学学报: 自然科学版, 2009, 40(5): 1457-1464.

    ZHOU De, YE Mei-xin, LUO Ru-deng. Mechanical analysis of through tied-arch composite bridge on high-speed railway[J]. Journal of Central South University: Science and Technology, 2009, 40(5): 1457-1464. (in Chinese).
    [14] 郝超. 大跨度钢斜拉桥的施工监控及其目标精度值[J]. 中国公路学报, 2003, 16(1): 54-57. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200301013.htm

    HAO Chao. Construction control and control precision goal of long-span steel cable-stayed bridge[J]. China Journal of Highway and Transport, 2003, 16(1): 54-57. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200301013.htm
    [15] 余钱华. 大跨混凝土桥梁施工监控中的应力分析与测试[J]. 中国公路学报, 2008, 21(2): 68-73. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200802012.htm

    YU Qian-hua. Stress analysis and measurement of long-span concrete bridge in process of construction supervisory control[J]. China Journal of Highway and Transport, 2008, 21(2): 68-73. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200802012.htm
    [16] 李小和, 孙新锋, 王民焕. 铁路(60+128+60)m系杆拱连续梁施工技术[J]. 桥梁建设, 2009(5): 53-56. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201201016.htm

    LI Xiao-he, SUN Xin-feng, WANG Min-huan. Construction techniques for a(60+128+60)m tied arch and continuous girder bridge[J]. Bridge Construction, 2009(5): 53-56. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201201016.htm
    [17] 丁岩. 高速铁路尼尔森体系系杆拱桥设计参数分析及调索研究[D]. 长沙: 长沙理工大学, 2010.

    DIN Yan. Analysis of structural parameters cable tension optimization of tied-arch bridge of Nielsen system in highspeed railway[D]. Changsha: Changsha University of Science and Technology, 2010. (in Chinese).
    [18] 田仲初, 丁岩, 蒋田勇. 高速铁路尼尔森体系系杆拱桥徐变变形影响因素[J]. 长沙理工大学学报: 自然科学版, 2010, 7(2): 25-32. https://www.cnki.com.cn/Article/CJFDTOTAL-HNQG201002004.htm

    TIAN Zhong-chu, DIN Yan, JIANG Tian-yong. Influencing factors on creep deformation of tied-arch bridge of Nielsen system in high-speed railway[J]. Journal of Changsha University of Science and Technology: Natural Science, 2010, 7(2): 25-32. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HNQG201002004.htm
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  1153
  • HTML全文浏览量:  141
  • PDF下载量:  1049
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-05-06

目录

    /

    返回文章
    返回