留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

车下设备对车体振动的影响

吴会超 邬平波 曾京 吴娜 单永林

吴会超, 邬平波, 曾京, 吴娜, 单永林. 车下设备对车体振动的影响[J]. 交通运输工程学报, 2012, 12(5): 50-56. doi: 10.19818/j.cnki.1671-1637.2012.05.007
引用本文: 吴会超, 邬平波, 曾京, 吴娜, 单永林. 车下设备对车体振动的影响[J]. 交通运输工程学报, 2012, 12(5): 50-56. doi: 10.19818/j.cnki.1671-1637.2012.05.007
WU Hui-chao, WU Ping-bo, CENG Jing, WU Na, DAN Yong-lin. Influence of equipment under car on carbody vibration[J]. Journal of Traffic and Transportation Engineering, 2012, 12(5): 50-56. doi: 10.19818/j.cnki.1671-1637.2012.05.007
Citation: WU Hui-chao, WU Ping-bo, CENG Jing, WU Na, DAN Yong-lin. Influence of equipment under car on carbody vibration[J]. Journal of Traffic and Transportation Engineering, 2012, 12(5): 50-56. doi: 10.19818/j.cnki.1671-1637.2012.05.007

车下设备对车体振动的影响

doi: 10.19818/j.cnki.1671-1637.2012.05.007
基金项目: 

"十一五"国家科技支撑计划项目 2009BAG12A02

详细信息
    作者简介:

    吴会超(1980 -),河北保定人,男,西南交通大学工学博士研究生,从事车辆动力学与疲劳强度研究

    邬平波(1968 -),浙江奉化人,男,西南交通大学研究员,工学博士

  • 中图分类号: U271.91

Influence of equipment under car on carbody vibration

More Information
  • 摘要: 为了考虑车体的弹性振动, 将车体等效成欧拉伯努利梁, 建立了车体与设备垂向耦合振动模型, 研究了车下设备刚性悬挂与弹性悬挂对车体振动幅频特性的影响。基于模态叠加法原理建立了考虑车体弹性振动和车下设备的高速动车组三维刚柔耦合动力学模型, 分析了车下设备悬挂方式、重心偏载与弹性悬挂参数对车体振动响应的影响规律。采用欧拉伯努利梁模型的数值分析结果表明:基于动力吸振器原理, 当车下设备采用合理的弹性悬挂参数时能够有效抑制车体的弹性振动, 并提高车体的垂向弯曲频率。采用三维刚柔耦合动力学模型仿真结果表明:车辆运行速度越高弹性悬挂的优点越明显, 车下设备横向偏载主要影响车体的横向振动特性, 纵向偏载主要影响车体的垂向振动特性;当车下设备的悬挂频率接近车体的垂向弯曲频率时能够降低车体的整体振动水平, 当车下设备的悬挂频率低于车体的垂向弯曲频率时, 提高车下设备弹性悬挂系统的阻尼能够在一定程度上抑制车体的弹性振动。

     

  • 图  1  车体与设备耦合振动模型

    Figure  1.  Coupling vibration model of carbody and equipment

    图  2  幅频特性曲线

    Figure  2.  Amplitude-frequency characteristic curves

    图  3  车体与设备耦合振动

    Figure  3.  Coupling vibrations of carbody and equipment

    图  4  车体有限元模型

    Figure  4.  FEM of carbody

    图  5  刚柔耦合动力学模型生成流程

    Figure  5.  Generation flow of rigid-flexible coupling dynamics model

    图  6  设备悬挂系统的实体模型

    Figure  6.  Real model of equipment suspension

    图  7  橡胶弹簧简化模型

    Figure  7.  Simplified models of rubber spring

    图  8  垂向振动加速度RMS值对比结果

    Figure  8.  Comparison result of vertical vibration acceleration RMSs

    图  9  偏载类型

    Figure  9.  Partial load types

    图  10  设备横向偏载对车体横向平稳性的影响

    Figure  10.  Influence of equipment lateral partial load on lateral riding index of carbody

    图  11  设备横向偏载对车体垂向平稳性的影响

    Figure  11.  Influence of equipment lateral partial load on vertical riding index of carbody

    图  12  设备纵向偏载对车体横向平稳性的影响

    Figure  12.  Influence of equipment longitudinal partial load on lateral riding index of carbody

    图  13  设备纵向偏载对车体垂向平稳性的影响

    Figure  13.  Influence of equipment longitudinal partial load on vertical riding index of carbody

    图  14  设备悬挂频率对车体垂向平稳性的影响

    Figure  14.  Influence of equipment suspension frequency on vertical riding index of carbody

    图  15  设备悬挂频率对车体垂向振动RMS的影响

    Figure  15.  Influence of equipment suspension frequency on vertical RMS index of carbody

    图  16  设备悬挂阻尼比对车体垂向平稳性的影响

    Figure  16.  Influence of equipment suspension damping ratio on vertical riding index of carbody

    图  17  设备悬挂阻尼比对车体垂向振动RMS的影响

    Figure  17.  Influence of equipment suspension damping ratio on vertical RMS index of carbody

    表  1  车下设备和车体参数

    Table  1.   Parameters of equipment and carbody

    下载: 导出CSV

    表  2  设备弹性悬挂参数

    Table  2.   Elastic suspension parameters of equipment

    下载: 导出CSV
  • [1] SUZUKI Y, AKUTSU K. Theoretical analysis of flexural vibration of car body[J]. QR of RTRI, 1990, 31 (1): 42-48.
    [2] DIANA G, CHELI F, BRUNI S, et al. Dynamic interaction between rail vehicle and track for high speed train[J]. Vehicle System Dynamics, 1995, 24 (1): 15-30.
    [3] YOUNG T H, LI C Y. Vertical vibration analysis of vehicle/imperfect track systems[J]. Vehicle System Dynamics, 2003, 40 (5): 329-349. doi: 10.1076/vesd.40.5.329.17912
    [4] ZHOU J, GOODALL R, REN L, et al. Influence of carbody vertical flexibility on ride quality of passenger railway vehicles[J]. Journal of Rail and Rapid Transit, 2009, 223 (5): 461-471. doi: 10.1243/09544097JRRT272
    [5] 周劲松, 张伟, 孙文静, 等. 铁道车辆弹性车体动力吸振器减振分析[J]. 中国铁道科学, 2009, 30 (3): 86-90. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200903017.htm

    ZHOU Jin-song, ZHANG Wei, SUN Wen-jing, et al. vibra-tion reduction analysis of the dynamic vibration absorber on the flexible carbody of railway vehicles[J]. China Railway Science, 2009, 30 (3): 86-90. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200903017.htm
    [6] 曾京, 罗仁. 考虑车体弹性效应的铁道客车系统振动分析[J]. 铁道学报, 2007, 29 (6): 19-25. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200706005.htm

    ZENG Jing, LUO Ren. Vibration analysis of railway passen-ger car systems by considering flexible carbody effect[J]. Journal of the China Railway Society, 2007, 29 (6): 19-25. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200706005.htm
    [7] 黄彩虹, 曾京, 邬平波, 等. 铁道客车车体弹性振动减振研究[J]. 工程力学, 2010, 27 (12): 250-256. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201012041.htm

    HUANG Cai-hong, ZENG Jing, WU Ping-bo, et al. Study on carbody flexible vibration reduction for railway passenger carriage[J]. Engineering Mechanics, 2010, 27 (12): 250-256. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201012041.htm
    [8] 曾京, 邬平波, 郝建华. 铁道客车系统的垂向减振分析[J]. 中国铁道科学, 2006, 27 (3): 62-67. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200603010.htm

    ZENG Jing, WU Ping-bo, HAO Jian-hua. Analysis of verti-cal reduction for railway vehicle systems[J]. China Railway Science, 2006, 27 (3): 62-67. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200603010.htm
    [9] CARLBOM P F. Combining MBS with FEM for rail vehicle dynamics analysis[J]. Multibody System Dynamics, 2001, 6 (3): 291-300. doi: 10.1023/A:1012072405882
    [10] ENELUND M, MÄHLER L, RUNESSON K, et al. Formu-lation and integration of the standard linear viscoelastic solid with fractional order rate laws[J]. International Journal of Solids and Structures, 1999, 36 (16): 2417-2442.
    [11] BERG M. A model for rubber springs in the dynamic analysis of rail vehicles[J]. Journal of Rail and Rapid Transit, 1997, 211 (2): 95-108.
    [12] BERG M. A non-linear rubber spring model for rail vehicle dynamics analysis[J]. Vehicle System Dynamics, 1998, 30 (3): 197-212.
    [13] BRUNI S, VINOLAS J, BERG M, et al. Modelling of sus-pension components in a rail vehicle dynamics context[J]. Vehicle System Dynamics, 2011, 49 (7): 1021-1072.
    [14] BRUNI S, COLLINA A. Modelling the viscoelastic behav-iour of elastomeric components: an application to the simula-tion of train-track interaction[J]. Vehicle System Dynamics, 2000, 34 (4): 283-301.
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  1222
  • HTML全文浏览量:  300
  • PDF下载量:  1055
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-04-16

目录

    /

    返回文章
    返回