Optimization algorithm of coordinated control scheme transition of traffic signal
-
摘要: 建立了信号控制方案过渡前后的交叉口相位差调整量关系方程组, 针对各交叉口过渡信号周期的允许取值范围, 利用交叉口相位差调整比例的极小极大原理, 提出了单周期对称调节过渡算法与N周期加权调节过渡算法。分析结果表明: 单周期对称调节过渡算法将在满足一次过渡条件下, 实现交叉口相位差实际调整量最大值的最小化; N周期加权调节过渡算法则可以综合考虑各交叉口过渡信号周期的不同允许取值范围, 根据交叉口相位差最大调整比例的最小化要求, 通过N个过渡信号周期最终实现协调控制方案的快速平滑过渡。与其他过渡算法相比, N周期加权调节过渡算法实现了对于控制区域内交叉口相位差调整量的整体优化, 使过渡方案能够更好地满足不同信号交叉口的控制需求, 具有更广的适用范围与实用性。Abstract: The equations describing the relationship of phase difference adjustment quantities were established for intersection before and after transition. Considering the allowable range of each intersection's signal cycle length in transition period, the single-cycle symmetrical adjustment transition algorithm and the N-cycle weighted adjustment transition algorithm were proposed based on the minimax principle of offset adjustment ratio. Analysis result shows that when the symmetrical adjustment transition algorithm is finished in one cycle, and the actual maximum adjustment of intersection phase difference is minimized. The weighted adjustment transition algorithm comprehensively consideres the allowable range of each intersection's transition signal cycle, and can make a coordinated control scheme rapidly and smoothly transit to a new coordinated control scheme after N transition signal cycles based on the minimum requirement of the maximum adjustment ratio of phase difference. Compared with other transition algorithms, the global optimization of phase difference adjustment for all intersections in control area can be realized by the weighted adjustment transition algorithm, which better satisfy the control demands of different signal intersections, so the weighted adjustment transition algorithm is more practical and has a broader application scope.
-
表 1 常用过渡方法
Table 1. Common transition methods
表 2 过渡信号周期的设置
Table 2. Setting of transition signal cycles
-
[1] LU Kai, ZENG Xiao-si, LI Lin, et al. Two-way bandwidth maximization model with proration impact factor for unbal-anced bandwidth demands[J]. Journal of Transportation Engineering, 2012, 138 (5): 527-534. doi: 10.1061/(ASCE)TE.1943-5436.0000352 [2] 卢凯, 郑淑鉴, 徐建闽, 等. 面向双向不同带宽需求的绿波协调控制优化模型[J]. 交通运输工程学报, 2011, 11 (5): 101-108, 126. http://transport.chd.edu.cn/article/id/201105016LU Kai, ZHENG Shu-jian, XU Jian-min, et al. Green wave coordinated control optimization models oriented to different bidirectional bandwidth demands[J]. Journal of Traffic and Transportation Engineering, 2011, 11 (5): 101-108, 126. (in Chinese). http://transport.chd.edu.cn/article/id/201105016 [3] 张勇, 白玉, 杨晓光. 城市道路交通网络死锁控制策略[J]. 中国公路学报, 2010, 23 (6): 96-102. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201006016.htmZHANG Yong, BAI Yu, YANG Xiao-guang. Strategy of traffic gridlock control for urban road network[J]. China Journal of Highway and Transport, 2010, 23 (6): 96-102. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201006016.htm [4] 卢凯, 徐建闽, 李轶舜. 进口单独放行方式下的干道双向绿波协调控制数解算法[J]. 中国公路学报, 2010, 23 (3): 95-101. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201003016.htmLU Kai, XU Jian-min, LI Yi-shun. Algebraic method of ar-terial road coordinate control for bidirectional green wave un-der signal design mode of one-phase-one-approach[J]. China Journal of Highway and Transport, 2010, 23 (3): 95-101. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201003016.htm [5] MCCOLM T. Evaluation of offset transition procedures[R]. Toronto: Traffic Control Centre Internal Memorandum, 1973. [6] KATES A J. Offset transition procedure[R]. London: Peat, Marwick, Mitchell and Company, 1973. [7] LIEBERMAN E B, WICKS D. A rapid signal transition algo-rithm[J]. Transportation Research Record, 1974 (509): 1-15. [8] ROSS P. An evaluation of network signal timing transition algorithms[J]. Transportation Engineering, 1977, 47 (9): 17-21. [9] MUSSA R, SELEKWA M F, CHITESHE A. Development of an optimal timing plans'transition procedure[C]∥TRB. The 82th Annual Meeting of Transportation Research Board. Washington DC: TRB, 2003: 1-15. [10] SHELBY S G, BULLOCK D M, GETTMAN D. Transition methods in traffic signal control[J]. Transportation Research Record, 2006 (1978): 130-140. [11] OBENBERGER J T. Methodology to assess traffic signal transition strategies employed to exit preemption control[D]. Falls Church: Virginia Polytechnic Institute and State Uni-versity, 2007. [12] 栗红强, 陆化普, 刘强. 城市交通线控多时段配时方案过渡算法研究[J]. 武汉理工大学学报: 交通科学与工程版, 2008, 32 (5): 779-781, 852. https://www.cnki.com.cn/Article/CJFDTOTAL-JTKJ200805001.htmLI Hong-qiang, LU Hua-pu, LIU Qiang. Research on tran-sition algorithms for timing plans of arterial time in-day traffic control[J]. Journal of Wuhan University of Technology: Transportation Science and Engineering, 2008, 32 (5): 779-781, 852. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JTKJ200805001.htm [13] 宋现敏. 城市交叉口信号协调控制方法研究[D]. 长春: 吉林大学, 2008.SONG Xian-min. Research on coordinated control methods in urban signalized intersections[D]. Changchun: Jilin Univer-sity, 2008. (in Chinese). [14] LEE J. Development and testing of a constrained optimization model for traffic signal plan transition[D]. Raleigh: North Carolina State University, 2009. [15] POHLMANN T, FRIEDRICH B. Traffic signal transition in coordinated meshed networks[J]. Transportation Research Record, 2010 (2192): 97-107. [16] 卢凯. 交通信号协调控制基础理论与关键技术研究[D]. 广州: 华南理工大学, 2010.LU Kai. Research on the foundational theory and key techniques of coordinate signal control in urban traffic network[D]. Guang-zhou: South China University of Technology, 2010. (in Chinese). -