Test on impact vibration transmission and attenuation characteristics of low vibration track
-
摘要: 针对重载铁路弹性支承块式无砟轨道(LVT)在实际应用中出现的弹性部件变形过大、易损坏等问题, 优化设计了既有弹性支承块, 将支承块短侧边坡度由1∶17.00调整为1∶4.85, 取消了块下垫板, 并采用一体化弹性套靴; 为验证设计成果, 建立了传统型LVT和改进型LVT足尺模型, 采用质量为1 120 kg的重载货车轮对, 以20 mm的落高进行落轴冲击试验, 分别从时域和频域角度对比分析了冲击作用下竖向振动在钢轨、支承块、道床板、底座板及地面等结构部件沿线路纵、竖、横向的传递衰减特性。研究结果表明: 轮轨产生的高频振动能量沿钢轨纵向传递, 低频振动能量传递给下部其他轨道结构; 竖向冲击振动在纵、竖向传递的过程中不断衰减且衰减速率逐渐降低, 在支承块和道床板表面横向传递过程中, 向外侧边缘传递振动增大; 相比传统型LVT, 改进型LVT整体弹性系数减小21.1%, 而阻尼系数增大5.4%, 其振动周期、衰减时长、振动峰值分别比传统型LVT小37.0%、21.3%和3.4%, 各结构部位功率谱密度峰值比传统型LVT小30%以上; 改进型LVT轨道结构各部位Z振级比传统型LVT小, 在地面处减小了3.65 dB, 能更有效、迅速地衰减轮轨冲击力和轨道结构振动, 振动水平更低, 降低了冲击作用对环境的影响。研究结果对于开展LVT减振性能试验验证、优化与工程应用有参考价值。Abstract: Aiming at the problems of excessive deformation and easy failure of elastic components in the application of low vibration track(LVT) for the heavy haul railway, the bearing block was optimally designed. The short side slope was adjusted from 1∶17.00 to 1∶4.85, the backing board under the bearing block was removed, and the elastic rubber boot was integrated. The traditional LVT and improved LVT full-scale models were established to verify the design results. A wheelset with a mass of 1 120 kg was used to carry out the drop impact test at a drop height of 20 mm. The transmission and attenuation characteristics of vertical vibrations of rail, bearing block, track slab, base slab and ground along the longitudinal, vertical and lateral directions of track under the impact were compared and analyzed from the aspects of time domain and frequency domain, respectively. Research result shows that the high frequency vibration energy generated by the wheel-rail impact transmits along the longitudinal direction of track, and the low frequency energy transmits to other track structures. The vertical impact vibration attenuates continuously in the process of longitudinal and vertical transmissions, and the attenuation rate decreases gradually. In the lateral transmission process of vibration on the surface of bearing block and track slab, the transmission vibration to the outer edge increases. Compared with the traditional LVT, the whole elastic coefficient of improved LVT decreases by 21.1%, while the damping coefficient increases by 5.4%. The vibration period, attenuation time and acceleration peak of improved LVT reduce by 37.0%, 21.3% and 3.4%, respectively, and the power spectral density peak of each structure component is more than 30% smaller than that of traditional LVT. The Z vibration level at each track structure component of improved LVT is smaller than that of traditional LVT, and the Z vibration level at the ground reduces by 3.65 dB. It can attenuate the wheel-rail impact force and track structure vibration more effectively and rapidly. The vibration level is lower, and the impact effect on the environment reduces. The research result serves good references for the vibration reduction performance test verification, optimization and engineering application of LVT.
-
表 1 两种LVT轨枕支点处Z振级、插入损失和衰减率
Table 1. Z vibration levels, insertion losses and attenuation rates of sleeper fulcrums of two LVTs
结构部位 轨道类型 各轨枕支点处Z振级及插入损失/dB 纵向衰减率/(dB·m-1) 6 7(5) 8(4) 9(3) 10(2) 11(1) Z振级 插入损失 Z振级 插入损失 Z振级 插入损失 Z振级 插入损失 Z振级 插入损失 Z振级 插入损失 钢轨 改进型 159.21 -4.80 145.38 -2.29 143.41 -2.49 141.94 -2.55 141.85 -1.63 139.89 -5.48 6.44 传统型 164.01 147.67 145.90 144.19 143.48 145.37 6.21 支承块 改进型 146.37 -2.25 141.63 -1.83 134.67 -1.54 132.49 -1.82 129.80 -1.47 132.70 -2.17 4.32 传统型 148.92 143.46 136.21 134.31 131.27 134.87 4.76 道床板 改进型 124.99 -1.36 124.95 -0.33 122.08 -3.85 120.94 -1.41 118.72 -0.57 114.45 -5.17 3.34 传统型 126.35 125.28 125.93 122.35 119.29 119.62 2.24 表 2 轨道结构部位Z振级与插入损失
Table 2. Z vibration levels and insertion losses of components of track structure
dB 轨道类型 钢轨 支承块 道床板 底座板 地面 Z振级 插入损失 Z振级 插入损失 Z振级 插入损失 Z振级 插入损失 Z振级 插入损失 改进型 159.21 -4.80 146.37 -2.55 124.99 -1.36 116.77 -2.61 104.27 -3.65 传统型 164.01 148.92 126.35 119.38 107.92 表 3 支承块处Z振级和插入损失
Table 3. Z vibration levels and insertion losses of bearing block
dB 轨道类型 测点1 测点2 测点3 Z振级 插入损失 Z振级 插入损失 Z振级 插入损失 改进型 148.09 -0.27 146.37 -2.55 148.51 -0.81 传统型 148.36 148.92 149.31 表 4 道床板表面Z振级与插入损失
Table 4. Z vibration levels and insertion loss at track slab surface
dB 轨道类型 测点1 测点2 测点3 测点4 测点5 Z振级 插入损失 Z振级 插入损失 Z振级 插入损失 Z振级 插入损失 Z振级 插入损失 改进型 114.93 -0.12 115.51 -1.11 124.99 -1.36 130.56 -0.58 131.28 -0.20 传统型 115.05 116.62 126.35 131.14 131.48 -
[1] 杨德修. 重载铁路轨道技术发展方向研究[J]. 铁道工程学报, 2012(2): 41-44. doi: 10.3969/j.issn.1006-2106.2012.02.009YANG De-xiu. Research on development direction of track technology of heavy-haul railway[J]. Journal of Railway Engineering Society, 2012(2): 41-44. (in Chinese). doi: 10.3969/j.issn.1006-2106.2012.02.009 [2] WANKE P, CHEN Zhong-fei, LIU Wan-kun, et al. Investigating the drivers of railway performance: evidence from selected Asian countries[J]. Habitat International, 2018, 80: 49-69. doi: 10.1016/j.habitatint.2018.08.004 [3] 张鹏飞, 桂昊, 雷晓燕, 等. 列车荷载下桥上CRTS Ⅲ型板式无砟轨道挠曲力与位移[J]. 交通运输工程学报, 2018, 18(6): 61-72. doi: 10.3969/j.issn.1671-1637.2018.06.007ZHANG Peng-fei, GUI Hao, LEI Xiao-yan, et al. Deflection force and displacement of CRTS Ⅲ slab track on bridge under train load[J]. Journal of Traffic and Transportation Engineering, 2018, 18(6): 61-72. (in Chinese). doi: 10.3969/j.issn.1671-1637.2018.06.007 [4] 杨文茂. 重载铁路隧道内无砟轨道结构选型研究[D]. 北京: 北京交通大学, 2012.YANG Wen-mao. Study on selection of unballasted track in heavy haul railway tunnel[D]. Beijing: Beijing Jiaotong University, 2012. (in Chinese). [5] TALOTTE C, GAUTIER P E, THOMPSON D J, et al. Identification, modelling and reduction potential of railway noise sources: a critical survey[J]. Journal of Sound and Vibration, 2003, 267(3): 447-468. doi: 10.1016/S0022-460X(03)00707-7 [6] 向俊, 林士财, 余翠英, 等. 路基不均匀沉降下无砟轨道受力与变形传递规律及其影响[J]. 交通运输工程学报, 2019, 19(2): 69-81. doi: 10.3969/j.issn.1671-1637.2019.02.007XIANG Jun, LIN Shi-cai, YU Cui-ying, et al. Transfer rules and effect of stress and deformation of ballastless track under uneven subgrade settlement[J]. Journal of Traffic and Transportation Engineering, 2019, 19(2): 69-81. (in Chinese). doi: 10.3969/j.issn.1671-1637.2019.02.007 [7] 任娟娟, 闫亚飞, 胡华锋, 等. 客货共线无砟轨道钢轨支点压力时程特性分析方法[J]. 交通运输工程学报, 2019, 19(2): 82-91. doi: 10.3969/j.issn.1671-1637.2019.02.008REN Juan-juan, YAN Ya-fei, HU Hua-feng, et al. Analysis method on time-history characteristics of rail supporting force for mixed passenger and freight railway with ballastless track[J]. Journal of Traffic and Transportation Engineering, 2019, 19(2): 82-91. (in Chinese). doi: 10.3969/j.issn.1671-1637.2019.02.008 [8] 赵勇. 重载铁路隧道内无砟轨道结构振动特性研究[J]. 铁道建筑, 2016(3): 136-141. doi: 10.3969/j.issn.1003-1995.2016.03.33ZHAO Yong. Research on vibration performance of heavy haul ballastless track structure in tunnel[J]. Railway Engineering, 2016(3): 136-141. (in Chinese). doi: 10.3969/j.issn.1003-1995.2016.03.33 [9] 尤瑞林, 王继军, 杜香刚, 等. 重载铁路弹性支承块式无砟轨道轨距保持能力计算分析[J]. 铁道建筑, 2015(3): 110-114. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201503032.htmYOU Rui-lin, WANG Ji-jun, DU Xiang-gang, et al. Calculation analysis of gauge-keeping ability of elastic bearing block-type ballastless track on heavy haul railway[J]. Railway Engineering, 2015(3): 110-114. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201503032.htm [10] JONES C J C, BLOCK J R. Prediction of ground vibration from freight trains[J]. Journal of Sound and Vibration, 1996, 193(1): 205-213. doi: 10.1006/jsvi.1996.0260 [11] SCHULTE-WERNING B, BEIER M, DEGEN K, et al. Research on noise and vibration reduction at DB to improve the environmental friendliness of railway traffic[J]. Journal of Sound and Vibration, 2006, 293(3/4/5): 1058-1069. [12] LOMBAERT G, GALVÍN P, FRANÇOIS S, et al. Quantification of uncertainty in the prediction of railway induced ground vibration due to the use of statistical track unevenness data[J]. Journal of Sound and Vibration, 2014, 333(18): 4232-4253. doi: 10.1016/j.jsv.2014.04.052 [13] 赫永峰, 王青娥, 尤瑞林. 客货共线铁路弹性支承块式无砟轨道结构安全与稳定性分析[J]. 铁道学报, 2018, 40(5): 131-136. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201805020.htmHE Yong-feng, WANG Qing-e, YOU Rui-lin. Study on safety and stability of low vibration track for mixed passenger and freight railway[J]. Journal of China Railway Society, 2018, 40(5): 131-136. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201805020.htm [14] 尤瑞林, 王继军, 江成, 等. 时速200 km客货共线铁路隧道内弹性支承块式无砟轨道适用性研究[J]. 铁道建筑, 2015(10): 136-139. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201510030.htmYOU Rui-lin, WANG Ji-jun, JIANG Cheng, et al. Study on suitability of elastic supported block-type ballastless track in railway tunnel for passenger train and freight train shared railway at 200 km·h-1 speed[J]. Railway Engineering, 2015(10): 136-139. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201510030.htm [15] 蔡成标, 徐鹏. 弹性支承块式无砟轨道结构参数动力学优化设计[J]. 铁道学报, 2011, 33(1): 69-75. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201101019.htmCAI Cheng-biao, XU Peng. Dynamic optimization design of the structural parameters of low vibration track[J]. Journal of the China Railway Society, 2011, 33(1): 69-75. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201101019.htm [16] DUKKIPATI R V, DONG Ren-guang. Impact loads due to wheel flats and shells[J]. Vehicle System Dynamics, 1999, 31(1): 1-22. doi: 10.1076/vesd.31.1.1.2097 [17] 陈小平, 王平, 陈嵘. 弹性支承块式无砟轨道的减振机理[J]. 铁道学报, 2007, 29(5): 69-72. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200705015.htmCHEN Xiao-ping, WANG Ping, CHEN Rong. Damping vibration mechanism of the elastic bearing block track[J]. Journal of the China Railway Society, 2007, 29(5): 69-72. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200705015.htm [18] BIAN Jian, GU Yuan-tong, MURRAY M H. A dynamic wheel-rail impact analysis of railway track under wheel flat by finite element analysis[J]. China Railway Science, 2013, 51(6): 784-797. [19] PETRIAEV P. The vibration impact of heavy freight train on the roadbed[J]. Procedia Engineering, 2016, 143: 1136-1143. [20] GERMONPRÉ M, NIELSEN J C O, DEGRANDE G, et al. Contributions of longitudinal track unevenness and track stiffness variation to railway induced vibration[J]. Journal of Sound and Vibration, 2018, 437: 292-307. [21] 朱剑月, 练松良. 弹性支承块轨道结构落轴冲击动力性能分析[J]. 中国铁道科学, 2006, 27(3): 22-26. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200603004.htmZHU Jian-yue, LIAN Song-liang. Analysis on the dynamic characteristics of low vibration track by use of wheel load drop[J]. China Railway Science, 2006, 27(3): 22-26. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200603004.htm [22] 朱剑月, 练松良. 轨道结构落轴冲击动态响应有限元分析[J]. 铁道学报, 2005, 27(3): 76-79. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200503015.htmZHU Jian-yue, LIAN Song-liang. Railway track structure dynamic response under wheel load drop by use of FEM[J]. Journal of the China Railway Society, 2005, 27(3): 76-79. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200503015.htm [23] 朱剑月, 耿传智. 高架弹性支承块轨道结构落轴冲击动态响应[J]. 同济大学学报(自然科学版), 2005, 33(12): 1621-1625. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ200512012.htmZHU Jian-yue, GENG Chuan-zhi. Comparison investigation on dynamic responses of elevated low vibration track under wheel load drop[J]. Journal of Tongji University (Natural Science), 2005, 33(12): 1621-1625. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ200512012.htm [24] 王祥秋, 杨林德, 高文华. 基于变分原理的整体道床结构动力有限元分析[J]. 振动与冲击, 2005, 24(4): 99-102. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ200504029.htmWANG Xiang-qiu, YANG Lin-de, GAO Wen-hua. Dynamic FEM analysis for the integration ballast structure based on variation principle[J]. Journal of Vibration and Shock, 2005, 24(4): 99-102. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ200504029.htm [25] 王淑迎. 斜坡型弹性支承块式无砟轨道动力性能研究[D]. 石家庄: 石家庄铁道大学, 2019.WANG Shu-ying. Research on dynamic performance of slope-type low vibration track[D]. Shijiazhuang: Shijiazhuang Tiedao University, 2019. (in Chinese). [26] 王泽萍. 客货共线弹性支承块式无砟轨道静动力学特性研究[D]. 成都: 西南交通大学, 2019.WANG Ze-ping. Research on static and dynamic properties of low vibration track for mixed passenger and freight railway[D]. Chengdu: Southwest Jiaotong University, 2019. (in Chinese). [27] 杨旭. 弹性支承块式无砟轨道轴重及速度适用性研究[D]. 石家庄: 石家庄铁道大学, 2017.YANG Xu. Applicability study on axle load and speed of low vibration track[D]. Shijiazhuang: Shijiazhuang Tiedao University, 2017. (in Chinese). [28] 苑志强. 弹性支承块式无砟轨道纵向分块及限位措施研究[D]. 石家庄: 石家庄铁道大学, 2017.YUAN Zhi-qiang. Study on track block and limiting measures of low vibration track[D]. Shijiazhuang: Shijiazhuang Tiedao University, 2017. (in Chinese). [29] 雷震宇, 闫旭. 车辆-轨道-桥梁竖直耦合振动程序设计及仿真[J]. 城市轨道交通研究, 2015(6): 28-35. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201506010.htmLEI Zhen-yu, YAN Xu. Programming and simulation of vehicle-track-bridge vertical coupling vibration[J]. Urban Mass Transit, 2015(6): 28-35. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201506010.htm [30] 赵东. 重载铁路隧道内弹性支承块式无砟轨道结构参数研究[D]. 石家庄: 石家庄铁道大学, 2016.ZHAO Dong. Study on structure parameters of low vibration track in heavy haul railway tunnel[D]. Shijiazhuang: Shijiazhuang Tiedao University, 2016. (in Chinese). [31] 吴斌, 李世业, 曾志平, 等. 重载列车下弹性支承块式无砟轨道静载试验[J]. 铁道工程学报, 2018(11): 27-31. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201811005.htmWU Bin, LI Shi-ye, ZENG Zhi-ping, et al. Static load test of low vibration track under heavy haul train[J]. Journal of Railway Engineering Society, 2018(11): 27-31. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201811005.htm [32] 中铁第五勘察设计院集团有限公司, 中南大学. 重载铁路隧道内无砟轨道结构型式及相关技术研究报告[R]. 北京: 中铁第五勘察设计院集团有限公司, 2018.China Railway Fifth Survey and Design Institute Group Co., Ltd., Central South University. Research report on structure and related technology of ballastless track in heavy-haul railway tunnel[R]. Beijing: China Railway Fifth Survey and Design Institute Group Co., Ltd., 2018. (in Chinese). [33] SCALEA F L D, MCNAMARA J. Measuring high-frequency wave propagation in railroad tracks by joint time-frequency analysis[J]. Journal of Sound and Vibration, 2004, 273(3): 637-651. [34] 练松良, 杨文忠, 刘扬. 不同类型轨枕轨道结构动力性能试验研究[J]. 铁道学报, 2010, 32(2): 131-136. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201002025.htmLIAN Song-liang, YANG Wen-zhong, LIU Yang. Test of dynamic behavior of the track structures with different types of sleepers[J]. Journal of the China Railway Society, 2010, 32(2): 131-136. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201002025.htm [35] 徐中秋. 基于1/3倍频程的轨道动力学测试参量校核[J]. 铁道建筑, 2015(5): 144-146. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201505040.htmXU Zhong-qiu. Calibration of orbital dynamics test parameters based on 1/3 octave[J]. Railway Engineering, 2015(5): 144-146. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201505040.htm -