Review on nano clay modified asphalt based on flame retardant and smoke suppression
-
摘要: 分析了沥青材料的热解燃烧特性,总结了沥青材料阻燃抑烟性能测试方法,归纳了国内外常用的沥青阻燃剂类型及其优缺点;论述了隧道沥青材料常用的阻燃技术,评析了纳米改性沥青阻燃抑烟机理;探讨了纳米黏土对沥青材料高低温性能、水稳定性及老化性能等路用性能的影响,展望了未来隧道阻燃抑烟沥青材料的研究方向。研究结果表明: 用于隧道沥青材料阻燃剂应具有良好的协同阻燃抑烟效应,而金属氢氧化物和纳米材料具有较大的应用潜力;沥青材料的阻燃抑烟性能测试主要参考聚合物阻燃测试方法,这些试验方法与沥青路面真实燃烧状态明显不符,亟需补充和完善沥青材料阻燃抑烟性能测试方法和标准;以纳米黏土为代表的纳米改性材料对热沥青的烟气释放具有显著的抑制作用,但目前研究主要集中于纳米材料和聚合物复合材料的阻燃机理方面,针对纳米改性沥青的阻燃抑烟机理缺乏系统性研究;纳米黏土可显著改善沥青的高温、水稳及老化性能,对低温性能的影响方面,国内外研究存在较大争议;应将热拌沥青混合料烟气控制技术、金属氢氧化物和纳米黏土协同阻燃技术及沥青材料阻燃性能测试方法等方面作为隧道阻燃抑烟沥青材料未来的重点研究方向。Abstract: The pyrolysis combustion mechanism of asphalt material was analyzed, and the test methods for flame-retardant and smoke-suppression performance of asphalt materials were concluded. The types, advantages, and disadvantages of commonly used asphalt flame retardants in domestic and overseas were investigated. The commonly used flame-retardant technologies of tunnel asphalt materials were studied, and the flame-retardant and smoke-suppression mechanism of nano-modified asphalt was evaluated. The influence of nano-clay on the road performance of asphalt materials was examined in terms of the high- and low-temperature performances, moisture stability, and aging performance. Moreover, the future research directions for flame-retardant and smoke-suppression asphalt materials for tunnels were assessed. Research results show that the flame retardant used in tunnel asphalt materials should have high synergistic flame-retardant and smoke-suppression effects, and the metal hydroxide and nano materials have great application potential. The flame-retardant and smoke-suppression performance testing of asphalt materials mainly includes polymer flame-retardant test methods, but these methods are inconsistent with the actual combustion state of asphalt pavement. Therefore, it is necessary to supplement the flame-retardant and smoke-suppression performance test methods and standards for asphalt materials. Nano-modified materials, such as the nano clay, significantly inhibit the smoke release of hot asphalt. However, current research mainly focuses on the flame-retardant mechanism of nano-materials and polymers, and there is a lack of systematic research on the flame-retardant and smoke-suppression mechanism of nano-modified asphalt. Nano clay significantly improves the high-temperature, moisture stability, and aging performances of asphalt, but there is controversy in the study of low-temperature performance in domestic and overseas. Investigating the technology for the smoke control of hot mix asphalt mixture, metal hydroxide and nano-clay synergistic flame-retardant technology, and flame-retardant performance test methods for asphalt materials should be the focuses of future research on tunnel flame-retardant and smoke-suppression asphalt materials. 3 tabs, 8 figs, 144 refs.
-
表 1 沥青阻燃抑烟性能测试方法
Table 1. Test methods of flame retardant and smoke suppression performance of asphalt
测试方法 参考标准 评价指标及标准 优点 缺点 LOI GB/T 2406—2009 小于21%:易燃材料 测试方便,操作简单 由于沥青的高温流体状体,测
试时可操作性差;属于小型燃
烧试验,非真实火灾情况下材
料的易燃性,测试精度不高21%~27%:可燃材料 大于27%:自熄材料 水平垂直燃烧
UL 94GB/T 2408—2008 V-0:高阻燃等级 V-1:低阻燃等级 V-2:最低阻燃等级 锥形量热仪 GB/T 16172—2007 燃烧热释率,点燃时间,燃烧失重,
生烟速率以及CO、CO2浓度等参数接近真实火灾状态下沥青
材料燃烧特性,测试精度高价格昂贵 烟密度 GB 8624—1997 烟密度等级小于等于75 操作简单,测试方便 精度不高,变异性较大 表 2 沥青材料阻燃剂
Table 2. Flame retardants of asphalt materials
名称 化合物名称 反应的状态 优点 缺点 有机类 有机卤系 溴系和氯系阻燃剂 固相 掺量少,阻燃效能高;阻燃剂在
燃烧过程中发烟量大,易产生
有毒气体阻燃效率高,对材料的物理机械性能
影响小;缺点是发烟量大、具有一定
毒性,易于水解和热稳定性较差等磷系 红磷、磷酸二氢铵、磷酸氢二铵、
磷酸铵、聚硫酸铵等无机
金属类锑(Sb) 氧化锑 气相 热稳定性好,不产生腐蚀性气体,
阻燃性能持久;其本身存在毒性单独使用阻燃效能较差,
且锑资源有限硼(B) 硼酸锌 液相、固相 热稳定性好,毒性低,消烟 与沥青的相容性较差,一般用作
其他阻燃剂的增效剂铝(Al) 氢氧化铝、三氧化二铝 固相、气相 具有阻燃、填充和抑烟三重功能,
资源丰富,价格低廉其添加量较大,影响沥青的物理力学
性能,与材料的兼容性差镁(Mg) 氢氧化镁 固相、气相 钙(Ca) 氢氧化钙 固相、气相 无机纳米
阻燃剂纳米材料 蒙脱土、累托石、蛭石、
膨胀石墨等固相 资源丰富、制备简单,可提高
沥青材料各项物理力学性能阻燃效果一般,存在一定的
技术问题纳米纤维
阻燃剂碳纳米管、海泡石、
石墨烯等固相 可显著改善沥青材料的各项
物理力学性能但其阻燃效果不佳,需与其他
阻燃剂复配使用表 3 OMMT化学成分质量百分数
Table 3. Chemical components mass percents of OMMT
% 化学组成 文献[100] 文献[101] 文献[102] 文献[103] 黏土A 黏土B 有机蒙脱土 有机蒙脱土 黏土A 黏土B 黏土C SiO2 67.60 67.70 60.40 68.71 42.990 0 49.150 0 51.170 0 Al2O3 22.40 23.30 17.91 24.02 8.394 0 8.715 0 9.512 0 Fe2O3 6.30 3.78 1.34 0.67 0.518 9 0.487 5 0.507 8 MgO 2.17 3.03 5.04 0.59 2.174 0 2.089 0 2.152 0 TiO2 0.20 0.48 0.11 2.18 0.043 0 0.043 5 0.050 3 CaO 0.19 0.26 2.49 1.22 0.153 1 0.395 5 0.332 7 K2O 0.13 0.21 0.50 1.12 0.167 2 0.289 6 0.280 7 Na2O 1.06 0.55 0.234 2 0.242 2 0.280 2 ZnO 0.01 0.007 7 0.008 8 0.009 0 灰分 44.720 0 38.000 0 35.250 0 -
[1] 罗刚. 中国10 km以上超长公路隧道统计[J]. 隧道建设, 2019, 39(8): 1380-1383. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201908030.htmLUO Gang. Statistics of super long road tunnels over 10km in China[J]. Tunnel Construction, 2019, 39(8): 1380-1383. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201908030.htm [2] 蒋树屏, 林志, 王少飞. 2018年中国公路隧道发展[J]. 隧道建设, 2019, 39(7): 1217-1220. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201907026.htmJIANG Shu-ping, LIN Zhi, WANG Shao-fei. Road tunnel development in China in 2018[J]. Tunnel Construction, 2019, 39(7): 1217-1220. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201907026.htm [3] XU Tao, HUANG Xiao-ming, ZHAO Yong-li. Investigation into the properties of asphalt mixtures containing magnesium hydroxide flame retardant[J]. Fire Safety Journal, 2011, 46(6): 330-334. doi: 10.1016/j.firesaf.2011.05.001 [4] QUN Yang, GUO Zhong-yin. Mixture design of fire-retarded OGFC in road tunnel[J]. Road Materials and Pavement Design, 2005, 6(2): 255-268. doi: 10.1080/14680629.2005.9690008 [5] AUUTELITANO F, BIANCHI F, GIULIANI F. Airborne emissions of asphalt/wax blends for warm mix asphalt production[J]. Journal of Cleaner Production, 2017, 164: 749-756. doi: 10.1016/j.jclepro.2017.06.247 [6] BOCZKAJ G, PRZYJAZNY A, KAMI AN'G SKI M. Characteristics of volatile organic compounds emission profiles from hot road bitumens[J]. Chemosphere, 2014, 107: 23-30. doi: 10.1016/j.chemosphere.2014.02.070 [7] POSSEBON E P, SPECHT L P, PEREIR D S, et al. PAHs emissions by 12 Brazilian bitumens: procedure and results[J]. Road Materials and Pavement Design, 2019, 20(6): 1481-1499. doi: 10.1080/14680629.2018.1447502 [8] 陆晖. 长隧道沥青路面火灾比尺模型分析和数值模拟[D]. 杭州: 浙江大学, 2005.LU Hui. Analysis of scaled model and numerical simulation for long tunnel asphalt pavement fire[D]. Hangzhou: Zhejiang University, 2005. (in Chinese) [9] 吴珂, 黄志义. 特长隧道火灾中沥青路面温度场的数值模拟[J]. 浙江大学学报(工学版), 2008, 42(1): 134-138. doi: 10.3785/j.issn.1008-973X.2008.01.025WU Ke, HUANG Zhi-yi. Numerical simulation of asphalt pavement temperature distribution in long tunnel fires[J]. Journal of Zhejiang University (Engineering Science), 2008, 42(1): 134-138. (in Chinese) doi: 10.3785/j.issn.1008-973X.2008.01.025 [10] 黄志义. 特长隧道沥青路面火灾过程燃烧机理与安全性试验研究[D]. 杭州: 浙江大学, 2007.HUANG Zhi-yi. Investigation of combustion mechanism and safety experiments of fire processes in long tunnel with asphalt pavement[D]. Hangzhou: Zhejiang University, 2007. (in Chinese) [11] 吴珂, 黄志义, 徐兴. 长隧道火灾中沥青路面燃烧的热效应研究[J]. 中国公路学报, 2009, 22(2): 77-81. doi: 10.3321/j.issn:1001-7372.2009.02.014WU Ke, HUANG Zhi-yi, XU Xing. Research on thermal effect of asphalt pavement combustion in long tunnel fires[J]. China Journal of Highway and Transport, 2009, 22(2): 77-81. (in Chinese) doi: 10.3321/j.issn:1001-7372.2009.02.014 [12] 吴珂. 长隧道火灾湍流燃烧模拟及结构防火安全研究[D]. 杭州: 浙江大学, 2008.WU Ke. Turbulent combustion modelling on long tunnel fires and structure fire safety[D]. Hangzhou: Zhejiang University, 2008. (in Chinese) [13] 邓宇强. 阻燃沥青的综合评定分析与公路隧道火灾温度场数值模拟[D]. 哈尔滨: 哈尔滨工业大学, 2008.DENG Yu-qiang. Comprehensive evaluation of flame-retardant asphalt mixtures and numerical simulation of road tunnel fire temperatures[D]. Harbin: Harbin Institute of Technology, 2008. (in Chinese) [14] XIAO Fei-peng, GUO Rui, WANG Jin-gang. Flame retardant and its influence on the performance of asphalt-a review[J]. Construction and Building Materials, 2019, 212: 841-861. doi: 10.1016/j.conbuildmat.2019.03.118 [15] 石华泉. 城市大型隧道沥青路面热分解全过程阻燃抑烟技术研究[D]. 南京: 南京林业大学, 2016.SHI Hua-quan. Study on flame retardant and smoke suppression technology of thermal decomposition of asphalt pavement under large urban tunnel fire[D]. Nanjing: Nanjing Forestry University, 2016. [16] 黄志义, 吴珂. 长大隧道沥青混凝土路面的防火安全性能[J]. 浙江大学学报(工学版), 2007, 41(8): 1427-1428. doi: 10.3785/j.issn.1008-973X.2007.08.040HUANG Zhi-yi, WU Ke. Fire safety of long tunnel asphalt concrete pavement[J]. Journal of Zhejiang University(Engineering Science), 2007, 41(8): 1427-1428. (in Chinese) doi: 10.3785/j.issn.1008-973X.2007.08.040 [17] 申爱琴. 道路工程材料[M]. 北京: 人民交通出版社, 2010.SHEN Ai-qin. Road Engineering Materials[M]. Beijing: China Communications Press, 2010. (in Chinese) [18] ZHAO Jie-wen, HUANG Xiao-ming, XU Tao. Combustion mechanism of asphalt binder with TG-MS technique based on components separation[J]. Construction and Building Materials, 2015, 80: 125-131. doi: 10.1016/j.conbuildmat.2014.11.056 [19] 梁永胜. 氢氧化铝/层状硅酸盐阻燃沥青的制备及其协同阻燃机理研究[D]. 武汉: 武汉理工大学, 2013.LIANG Yong-sheng. Preparation of flame-retardant bitumen with aluminium trihydroxide/layered silicate and their synergetic mechanism[D]. Wuhan: Wuhan University of Technology, 2013. (in Chinese) [20] 朱凯. 基于沥青多组分燃烧特性的钙基纳米复合阻燃体系研究[D]. 杭州: 浙江大学, 2015.ZHU Kai. Study on calcium-based flame retardant nanocomposites base on multi-components combustion characteristics of asphalt[D]. Hangzhou: Zhejiang University, 2015. (in Chinese) [21] 任梵, 张晓娇, 孙海斌, 等. 国内外路用阻燃沥青的研究现状与展望[J]. 长安大学学报(自然科学版), 2012, 32(6): 1-10. doi: 10.3969/j.issn.1671-8879.2012.06.001REN Fan, ZHANG Xiao-jiao, SUN Hai-bin, et al. Research status and development trend of flame-retardant asphalt at home and abroad[J]. Journal of Chang'an University (Natural Science Edition), 2012, 32(6): 1-10. (in Chinese) doi: 10.3969/j.issn.1671-8879.2012.06.001 [22] 张睿卓, 宁华宇. 隧道阻燃沥青及其混合料的发展现状[J]. 石油沥青, 2011, 25(6): 69-72. doi: 10.3969/j.issn.1006-7450.2011.06.014ZHANG Rui-zhuo, NING Hua-yu. Review of research on flame retardant bitumen and its mixture[J]. Petroleum Asphalt, 2011, 25(6): 69-72. (in Chinese) doi: 10.3969/j.issn.1006-7450.2011.06.014 [23] 胡源, 宋磊. 阻燃聚合物纳米复合材料[M]. 北京: 化学工业出版社, 2008.HU Yuan, SONG Lei. Flame Retardant Polymer Nanocomposites[M]. Beijing: Chemical Industry Press, 2008. (in Chinese) [24] QIU Jun-ling, YANG Tao, WANG Xiu-ling, et al. Review of the flame retardancy on highway tunnel asphalt pavement[J]. Construction and Building Materials, 2019, 195: 468-482. doi: 10.1016/j.conbuildmat.2018.11.034 [25] 关甫洋. 隧道沥青路面混合料阻燃降粘技术研究[D]. 西安: 长安大学, 2015.GUANG Fu-yang. Study of asphalt flame retardant and decreasing viscosity for asphalt pavement mixture in tunnel[D]. Xi'an: Chang'an University, 2015. (in Chinese) [26] 张军, 纪奎江, 夏延致. 聚合物燃烧与阻燃技术[M]. 北京: 化学工业出版社, 2005.ZHANG Jun, JI Kui-jiang, XIA Yan-zhi. Polymer Combustion and Flame Retardant Technology[M]. Beijing: Chemical Industry Press, 2005. (in Chinese) [27] 陈拴发, 陈华鑫, 郑木莲. 沥青混合料设计与施工[M]. 北京: 化学工业出版社, 2006.CHEN Shuan-fa, CHEN Hua-xin, ZHENG Mu-lian. Asphalt Mixture Design and Construction[M]. Beijing: Chemical Industry Press, 2005. (in Chinese) [28] 苗英豪, 王秉纲. 沥青路面降噪性能研究综述[J]. 中外公路, 2006, 26(4): 65-68. doi: 10.3969/j.issn.1671-2579.2006.04.020MIAO Ying-hao, WANG Bing-gang. Review on noise reduction performance of asphalt pavement[J]. Journal of China and Foreign Highway, 2006, 26(4): 65-68. (in Chinese) doi: 10.3969/j.issn.1671-2579.2006.04.020 [29] 丁庆军, 沈凡, 黄绍龙. 基于氢氧化铝阻燃体系的开级配沥青磨耗层防火面层研究[J]. 中南大学学报(自然科学版), 2009, 40(4): 932-939. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD200904018.htmDING Qing-jun, SHEN Fan, HUANG Shao-long. Flameproof road surface of open-graded asphalt friction course based on ATH flame-retarding system[J]. Journal of Central South University of (Science and Technology), 2009, 40(4): 932-939. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD200904018.htm [30] 杨群, 郭忠印, 蔺习雄. 隧道路面阻燃多孔沥青混凝土性能研究[J]. 同济大学学报(自然科学版), 2005, 33(3): 316-320. doi: 10.3321/j.issn:0253-374X.2005.03.007YANG Qun, GUO Zhong-yin, LIN Xi-xiong. Research on fire-retarded open-graded friction course used in road tunnel[J]. Journal of Tongji University (Natural Science), 2005, 33(3): 316-320. (in Chinese) doi: 10.3321/j.issn:0253-374X.2005.03.007 [31] 杨良, 郭忠印, 杨学良, 等. OGFC面层在公路隧道防火中的作用[J]. 安全与环境学报, 2004, 4(4): 83-87. doi: 10.3969/j.issn.1009-6094.2004.04.025YANG Liang, GUO Zhong-yin, YANG Xue-liang, et al. Effect of porous asphalt pavement on highway tunnel fire protection[J]. Journal of Safety and Environment, 2004, 4(4): 83-87. (in Chinese) doi: 10.3969/j.issn.1009-6094.2004.04.025 [32] BONATI A, RAINIERI S, BOCHICCHIO G, et al. Characterization of thermal properties and combustion behaviour of asphalt mixtures in the cone calorimeter[J]. Fire Safety Journal, 2015, 74: 25-31. doi: 10.1016/j.firesaf.2015.04.003 [33] AL-RUBAEI A M, STENGLEIN A L, VIKLANDER M, et al. Long-term hydraulic performance of porous asphalt pavements in northern Sweden[J]. Journal of Irrigation and Drainage Engineering Asce, 2013, 139(6): 499-505. doi: 10.1061/(ASCE)IR.1943-4774.0000569 [34] MORIYOSHI A, JIN T, NAKAI T, et al. Evaluation methods for porous asphalt pavement in service for fourteen years[J]. Construction and Building Materials, 2013, 42(9): 190-195. [35] 刑明亮, 陈拴发, 陈华鑫, 等. 排水沥青混合料水稳定性能研究[J]. 武汉理工大学学报, 2009, 31(4): 151-154. doi: 10.3963/j.issn.1671-4431.2009.04.041XING Ming-liang, CHEN Shuan-fa, CHEN Hua-xin, et al. Research on water stability of porous asphalt mixture[J]. Journal of Wuhan University of Technology, 2009, 31(4): 151-154. (in Chinese) doi: 10.3963/j.issn.1671-4431.2009.04.041 [36] 刘薇, 张方方, 张捷, 等. 隧道阻燃沥青及混合料阻燃性能评价[J]. 中外公路, 2010, 30(5): 237-240. https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201005060.htmLIU Wei, ZAHNG Fang-fang, ZHANG Jie, et al. Evaluation of flame retardant performance of tunnel asphalt and mixture[J]. Journal of China and Foreign Highway, 2010, 30(5): 237-240. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201005060.htm [37] 杨树人, 李力. 阻燃沥青及其混合料的研究现状[J]. 石油沥青, 2007, 21(4): 1-5. doi: 10.3969/j.issn.1006-7450.2007.04.001YANG Shu-ren, LI Li. Review of the research on flame retardant bitumen and tis mixture[J]. Petroleum Asphalt, 2007, 21(4): 1-5. (in Chinese) doi: 10.3969/j.issn.1006-7450.2007.04.001 [38] 丁勇. 聚磷酸铵及其与无机粒子复配体系阻燃硅橡胶的研究[D]. 广州: 华南理工大学, 2017.DING Yong. Study on the flame retardant effects of ammonium polyphosphate and its compounds with inorganic particles on silicone rubber[D]. Guangzhou: South China University of Technology, 2017. (in Chinese) [39] 陈辉强. 新型阻燃沥青的制备及其阻燃机理研究[D]. 西安: 长安大学, 2009.CHEN Hui-qiang. Research on preparation and flame-retardant mechanism of fire-retardant asphalt[D]. Xi'an: Chang'an University, 2009. (in Chinese) [40] 袁小亚, 范芳芳. 阻燃沥青的研究进展[J]. 中外公路, 2012, 32(1): 240-243. doi: 10.3969/j.issn.1671-2579.2012.01.054YUAN Xiao-ya, FAN Fang-fang. Research progress of flame retardant asphalt[J]. Journal of China and Foreign Highway, 2012, 32(1): 240-243. (in Chinese) doi: 10.3969/j.issn.1671-2579.2012.01.054 [41] 陈辉强, 郝培文. 钛酸酯偶联剂对沥青阻燃剂表面改性的研究[J]. 武汉理工大学学报, 2009, 31(17): 66-69. doi: 10.3963/j.issn.1671-4431.2009.17.019CHEN Hui-qiang, HAO Pei-wen. Research on the surface modification of fire-retardant asphalt with titanate coupling agent[J]. Journal of Wuhan University of Technology, 2009, 31(17): 66-69. (in Chinese) doi: 10.3963/j.issn.1671-4431.2009.17.019 [42] 李小玲. 阻燃沥青的制备及其混合料性能研究[D]. 兰州: 兰州交通大学, 2014.LI Xiao-ling. Research for preparation of flame-retardant asphalt and mixture performance[D]. Lanzhou: Lanzhou Jiaotong University, 2014. (in Chinese) [43] 刘涛, 言志超, 刘祥. 聚磷酸铵阻燃沥青的研究[J]. 石油沥青, 2013, 27(5): 45-48. https://www.cnki.com.cn/Article/CJFDTOTAL-OILE201305019.htmLIU Tao, YAN Zhi-chao, LIU Xiang. Study on ammonium polyphosphate flame-retardant asphalt[J]. Petroleum Asphalt, 2013, 27(5): 45-48. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-OILE201305019.htm [44] 盛燕萍, 乔云雁, 薛哲, 等. 阻燃剂表面改性对阻燃沥青性能的影响[J]. 硅酸盐通报, 2018, 37(3): 961-966. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201803035.htmSHENG Yan-ping, QIAO Yun-yan, XUE Zhe, et al. Influence of surface modification of flame retardant on performance of flame retardant asphalt[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(3): 961-966. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201803035.htm [45] KILIARIS P, PAPASPYRIDES C D. Polymer/layered silicate (clay) nanocomposites: an overview of flame retardancy[J]. Progress in Polymer Science, 2010, 35(7): 902-958. doi: 10.1016/j.progpolymsci.2010.03.001 [46] 温永. 有机蒙脱土-氢氧化物改性沥青的制备及其阻燃性能研究[D]. 西安: 长安大学, 2012.WEN Yong. The preparation and flame retardancy of organo-montmorillonite/hydroxid modified asphalt[D]. Xi'an: Chang'an University, 2012. (in Chinese) [47] 范芳芳. 纳米复合阻燃沥青的设计与性能研究[D]. 重庆: 重庆交通大学, 2012.FAN Fang-fang. Design and performance of fire-retarding the asphalt with the nano-flame retardants[D]. Chongqing: Chongqing Jiaotong University, 2012. (in Chinese) [48] 黄维蓉. 纳米层状硅酸盐改性沥青路用性能试验研究[J]. 重庆交通大学学报(自然科学版), 2009, 28(2): 231-235. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT200902018.htmHUANG Wei-rong. Experimental study on performance of nano-layered silicate modified asphalt pavement[J]. Journal of Chongqing Jiaotong University(Natural Science), 2009, 28(2): 231-235. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT200902018.htm [49] 王昊鹏, 龚明辉, 杨军, 等. 纳米改性沥青研究进展[J]. 石油沥青, 2015, 29(3): 51-58. doi: 10.3969/j.issn.1006-7450.2015.03.012WANG Hao-peng, GONG Ming-hui, YANG Jun, et al. Advances in nanometer modified asphalt[J]. Petroleum Asphalt, 2015, 29(3): 51-58. (in Chinese) doi: 10.3969/j.issn.1006-7450.2015.03.012 [50] 王刘欣. 纳米改性沥青路面材料性能研究[D]. 长春: 吉林大学, 2016.WANG Liu-xin. Study on the performance of nano modified asphalt pavement materials[D]. Changchun: Jilin University, 2016. (in Chinese) [51] 杨泽清, 肖新颜. 纳米蒙脱土改性沥青复合材料研究进展[J]. 现代化工, 2013, 33(3): 33-37. doi: 10.3969/j.issn.0253-4320.2013.03.009YANG Ze-qing, XIAO Xin-yan. Progress in nano-montmorillonite modified asphalt composites[J]. Modern Chemical Industry, 2013, 33(3): 33-37. (in Chinese) doi: 10.3969/j.issn.0253-4320.2013.03.009 [52] 魏建国, 谢成, 付其林. 阻燃剂对沥青与沥青混合料性能的影响[J]. 中国公路学报, 2013, 26(6): 30-37. doi: 10.3969/j.issn.1001-7372.2013.06.005WEI Jian-guo, XIE Cheng, FU Qi-lin. Influence of flame retardant on technical performances of asphalt and asphalt mixture[J]. China Journal of Highway and Transport, 2013, 26(6): 30-37. (in Chinese) doi: 10.3969/j.issn.1001-7372.2013.06.005 [53] 陈阁谷, 关莹, 亓宪明, 等. 聚合物/层状硅酸盐纳米复合材料阻燃性研究进展[J]. 材料工程, 2015, 43(8): 104-112. https://www.cnki.com.cn/Article/CJFDTOTAL-CLGC201508017.htmCHEN Ge-gu, GUAN Ying, QI Xian-ming, et al. Recent progress on flame retardance of polymer/layered silicate nanocomposites[J]. Journal of Materials Engineering, 2015, 43(8): 104-112. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLGC201508017.htm [54] PEI Jian-zhong, WEN Yong, LI Yan-wei, et al. Flame-retarding effects and combustion properties of asphalt binder blended with organo montmorillonite and alumina trihydrate[J]. Construction and Building Materials, 2014, 72: 41-47. doi: 10.1016/j.conbuildmat.2014.09.013 [55] BONATI A, MERUSI F, BOCHICCHIO G, et al. Effect of nanoclay and conventional flame retardants on asphalt mixtures fire reaction[J]. Construction and Building Materials, 2013, 47: 990-1000. doi: 10.1016/j.conbuildmat.2013.06.002 [56] ZHANG Heng-long, SHI Cai-jun, HAN Jun, et al. Effect of organic layered silicates on flame retardancy and aging properties of bitumen[J]. Construction and Building Materials, 2013, 40: 1151-1155. doi: 10.1016/j.conbuildmat.2012.11.097 [57] 梁永胜, 余剑英, 李汶卒, 等. 氢氧化铝/蒙脱土复合阻燃沥青的制备与性能研究[J]. 武汉理工大学学报, 2013, 35(10): 38-42. doi: 10.3963/j.issn.1671-4431.2013.10.008LIANG Yong-sheng, YU Jian-ying, LI Wen-zu, et al. Preparation and properties of flame-retardant bitumen with aluminium trihydroxide/montmorillonite[J]. Journal of Wuhan University of Technology, 2013, 35(10): 38-42. (in Chinese) doi: 10.3963/j.issn.1671-4431.2013.10.008 [58] 丁庆军, 刘新权, 沈凡, 等. ATH沥青阻燃体系试验及机理分析[J]. 中国公路学报, 2008, 21(5): 10-14. doi: 10.3321/j.issn:1001-7372.2008.05.003DING Qing-jun, LIU Xin-quan, SHEN Fan, et al. Test and mechanism analysis of ATH asphalt flame-retarding system[J]. China Journal of Highway and Transport, 2008, 21(5): 10-14. (in Chinese) doi: 10.3321/j.issn:1001-7372.2008.05.003 [59] YANG Xiao-long, SHEN Ai-qin, JIANG Yi-xin, et al. Properties and mechanism of flame retardance and smoke suppression in asphalt binder containing organic montmorillonite[J]. Construction and Building Materials, 2021, 302: 124148. doi: 10.1016/j.conbuildmat.2021.124148 [60] 白卯娟, 金杨, 王勇, 等. 聚合物/层状硅酸盐纳米复合材料阻燃机理研究进展[J]. 现代塑料加工应用, 2015, 27(1): 60-63. doi: 10.3969/j.issn.1004-3055.2015.01.017BAI Mao-juan, JIN Yang, WANG Yong, et al. Research process of flame-retardant mechanism of polymer/layered silicate nanocomposites[J]. Modern Plastics Processing and Application, 2015, 27(1): 60-63. (in Chinese) doi: 10.3969/j.issn.1004-3055.2015.01.017 [61] 马志远, 刘继纯, 井蒙蒙. 聚合物/层状硅酸盐纳米复合材料的阻燃性能研究进展[J]. 化工新型材料, 2012, 40(4): 23-25, 30. doi: 10.3969/j.issn.1006-3536.2012.04.008MA Zhi-yuan, LIU Ji-chun, JING Meng-meng. Research progress of the flame retardancy of polymer/layer silicate nanocomposites[J]. New Chemical Materials, 2012, 40(4): 23-25, 30. (in Chinese) doi: 10.3969/j.issn.1006-3536.2012.04.008 [62] COSTA A, BENTA A. Economic and environmental impact study of warm mix asphalt compared to hot mix asphalt[J]. Journal of Cleaner Production, 2016, 112: 2308-2317. doi: 10.1016/j.jclepro.2015.10.077 [63] 陈云飞. 温拌沥青混合料在寒冷地区高等级路面应用研究[D]. 西安: 长安大学, 2016.CHEN Yun-fei. Study of application of warm-mix bitumen mixture on high grade pavement in cold area[D]. Xi'an: Chang'an University, 2016. (in Chinese) [64] LIN Shi-ying, WINGTAT H, ZHEN Leng. Air pollutant emissions and acoustic performance of hot mix asphalts[J]. Construction and Building Materials, 2016, 129: 1-10. doi: 10.1016/j.conbuildmat.2016.11.013 [65] 杨锡武, 彭绪亚, 钱诗林. 路面施工沥青烟气抑制剂及现场应用试验研究[J]. 华中科技大学学报(自然科学版), 2012, 40(6): 122-127. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201206028.htmYANG Xi-wu, PENG Xu-ya, QIAN Shi-lin. Experimental study on suppression agents of asphalt fume from pavement construction and its application[J]. Journal of Huazhong University of Science and Technology(Nature Science), 2012, 40(6): 122-127. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201206028.htm [66] 王浩轩, 黄玮, 丛玉凤, 等. 环保型道路沥青的制备[J]. 建筑材料学报, 2020, 23: 700-706. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX202003031.htmWANG Hao-xuan, HUANG Wei, CONG Yu-feng, et al. Preparation of environment-friendly road asphalt[J]. Journal of Building Materials, 2020, 23: 700-706. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX202003031.htm [67] RUBIO M C, MORENO F, MARTINEZ-ECHEVARRIA M J, et al. Comparative analysis of emissions from the manufacture and use of hot and half-warm mix asphalt[J]. Journal of Cleaner Production, 2013, 41: 1-6. doi: 10.1016/j.jclepro.2012.09.036 [68] ABDULLAH M E, ZAMHARI K A, HAININ M R, et al. High temperature characteristics of warm mix asphalt mixtures with nanoclay and chemical warm mix asphalt modified binders[J]. Journal of Cleaner Production, 2016, 122: 326-334. doi: 10.1016/j.jclepro.2016.02.033 [69] 刘鹏. 常温拌和沥青混合料性能评价与改善研究[D]. 北京: 北京建筑大学, 2017.LIU Peng. Study on performance evaluation and improvement of cold asphalt mixture[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2017. (in Chinese) [70] 佟禹, 郭朝阳, 李振, 等. 一种常温沥青及沥青混合料性能研究[J]. 中外公路, 2018, 38(1): 302-305. https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201801064.htmTONG Yu, GUO Chao-yang, LI Zhen, et al. Study on properties of a normal temperature asphalt and asphalt mixture[J]. Journal of China and Foreign Highway, 2018, 38(1): 302-305. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201801064.htm [71] 秦永春, 黄颂昌, 徐剑, 等. 温拌沥青混合料节能减排效果的测试与分析[J]. 公路交通科技, 2009, 26(8): 33-37. doi: 10.3969/j.issn.1002-0268.2009.08.007QIN Yong-chun, HUANG Song-chang, XU Jian, et al. Test and analysis of energy saving and emission reduction of warm mixed asphalt[J]. Journal of Highway and Transportation Research and Development, 2009, 26(8): 33-37. (in Chinese) doi: 10.3969/j.issn.1002-0268.2009.08.007 [72] RUBIO M C, MARTÍNEZ G, BAENA L, et al. Warm mix asphalt: an overview[J]. Journal of Cleaner Production, 2012, 24: 76-84. doi: 10.1016/j.jclepro.2011.11.053 [73] VAITKUS A, AČG YGAS D, LAURINAVI AČG IUS A, et al. Influence of warm mix asphalt technology on asphalt physical and mechanical properties[J]. Construction and Building Materials, 2016, 112: 800-806. doi: 10.1016/j.conbuildmat.2016.02.212 [74] LEI Min, WU Shao-peng, LIU Gang, et al. VOCs characteristics and their relation with rheological properties of base and modified bitumens at different temperatures[J]. Construction and Building Materials, 2018, 160: 794-801. doi: 10.1016/j.conbuildmat.2017.12.158 [75] MO Shi-cong, WANG YU-hong, XIONG Feng, et al. Effects of asphalt source and mixing temperature on the generated asphalt fumes[J]. Journal of Hazardous Materials, 2019, 371: 342-351. doi: 10.1016/j.jhazmat.2019.03.025 [76] 杨锡武, 彭绪亚, 张兴雨, 等. 沥青烟气抑制剂及沥青混合料性能的试验[J]. 重庆大学学报, 2013, 36(12): 70-78. doi: 10.11835/j.issn.1000-582X.2013.12.011YANG Xi-wu, PENG Xu-ya, ZHANG Xing-yu, et al. Experiments on the asphalt fume suppression agents and properties of asphalt concrete with fume suppression agent[J]. Journal of Chongqing University, 2013, 36(12): 70-78. (in Chinese) doi: 10.11835/j.issn.1000-582X.2013.12.011 [77] 张红华. 抑烟沥青的性能及抑烟效果评价研究[D]. 武汉: 武汉理工大学, 2014.ZHANG Hong-hua. Study on performance and suppression effect of inhibitors modified asphalts[D]. Wuhan: Wuhan University of Technology, 2014. (in Chinese) [78] 黄刚. 高温条件下抑烟改性沥青开发及混合料性能研究[D]. 重庆: 重庆交通大学, 2013.HUANG Gang. Exploitation of modified asphalt of fume suppression and study on performance of its mixture under the elevated temperature[D]. Chongqing: Chongqing Jiaotong University, 2013. (in Chinese) [79] 孙仕伟, 乔云雁, 杨晓菲, 等. 不同抑烟剂对沥青混合料动态性能的影响及抑烟效果研究[J]. 新型建筑材料, 2017, 25(1): 25-29. doi: 10.3969/j.issn.1001-702X.2017.01.007SUN Shi-wei, QIAO Yun-yan, YANG Xiao-fei, et al. Effect of different smoke suppression agent on the dynamic performance of asphalt mixture and the effect of smoke suppression[J]. New Building Materials, 2017, 25(1): 25-29. (in Chinese) doi: 10.3969/j.issn.1001-702X.2017.01.007 [80] 黄刚, 何兆益, 周超, 等. 膨胀石墨抑制沥青烟机理与抑烟沥青混合料动态性能[J]. 中国公路学报, 2015, 28(10): 1-10. doi: 10.3969/j.issn.1001-7372.2015.10.001HUANG Gang, HE Zhao-yi, ZHOU Chao, et al. Suppression mechanism of expanded graphite for asphalt fume and dynamic performance of asphalt mixture of fume suppression[J]. China Journal of Highway and Transport, 2015, 28(10): 1-10. (in Chinese) doi: 10.3969/j.issn.1001-7372.2015.10.001 [81] 李澳. 橡胶沥青净味机理及性能评价[D]. 哈尔滨: 哈尔滨工业大学, 2020.LI Ao. Deodorization mechanism and performance evaluation of rubber asphalt[D]. Harbin: Harbin Institute of Technology, 2020. (in Chinese) [82] CUI Pei-qiang, WU Shao-peng, XIAO Yue, et al. Study on the deteriorations of bituminous binder resulted from volatile organic compounds emissions[J]. Construction and Building Materials, 2014, 68: 644-649. doi: 10.1016/j.conbuildmat.2014.06.067 [83] CUI Pei-qiang, WU Shao-peng, XIAO Yue, et al. Inhibiting effect of layered double hydroxides on the emissions of volatile organic compounds from bituminous materials[J]. Journal of Cleaner Production, 2015, 108: 987-991. doi: 10.1016/j.jclepro.2015.06.115 [84] CUI P Q, ZHOU H G, LI C, et al. Characteristics of using layered double hydroxides to reduce the VOCs from bituminous materials[J]. Construction and Building Materials, 2016, 123: 69-77. doi: 10.1016/j.conbuildmat.2016.06.117 [85] WANG Wen, PENG Yao, ZAMMARANO M, et al. Effect of ammonium polyphosphate to aluminum hydroxide mass ratio on the properties of wood-flour/polypropylene composites[J]. Polymers, 2017, 9(11): 615. doi: 10.3390/polym9110615 [86] ABDULLAH M E, HAININ M R, YUSOFF N I M, et al. Laboratory evaluation on the characteristics and pollutant emissions of nanoclay and chemical warm mix asphalt modified binders[J]. Construction and Building Materials, 2016, 113: 488-497. doi: 10.1016/j.conbuildmat.2016.03.068 [87] WANG Hai-nan, DANG Zheng-xia, LI Lian, et al. Analysis on fatigue crack growth laws for crumb rubber modified (CRM) asphalt mixture[J]. Construction and Building Materials, 2013, 47: 1342-1349. doi: 10.1016/j.conbuildmat.2013.06.014 [88] HOU Guan-yi, TAO Wei, LIU Jun, et al. Effect of the structural characteristics of solution styrene-butadiene rubber on the properties of rubber composites[J]. Journal of Applied Polymer Science, 2017, DOI: 10.1002/APP.45749. [89] LARSEN D O, ALESSANDRINI J L, BOSCH A, et al. Micro-structural and rheological characteristics of SBS-asphalt blends during their manufacturing[J]. Construction and Building Materials, 2009, 23(8): 2769-2774. doi: 10.1016/j.conbuildmat.2009.03.008 [90] LIU Hong-ying, CHEN Zhi-jun, WANG Wen, et al. Investigation of the rheological modification mechanism of crumb rubber modified asphalt (CRMA) containing TOR additive[J]. Construction and Building Materials, 2014, 67: 225-233. doi: 10.1016/j.conbuildmat.2013.11.031 [91] FANG Chang-qing, YU Rui-en, LIU Shao-long, et al. Nanomaterials applied in asphalt modification: a review[J]. Journal of Materials Science and Technology, 2013, 29(7): 589-594. doi: 10.1016/j.jmst.2013.04.008 [92] PENG Chao, YU Jian-ying, DAI Jing, et al. Effect of Zn/Al layered double hydroxide containing 2-hydroxy-4-n-octoxy-benzophenone on UV aging resistance of asphalt[J]. Advances in Materials Science and Engineering, 2015, 2015: 739831. [93] ZHANG Heng-long, Xu Hong-bin, Wang Xiao-liang, et al. Microstructures and thermal aging mechanism of expanded, vermiculite modified bitumen[J]. Construction and Building Materials, 2013, 47: 919-926. doi: 10.1016/j.conbuildmat.2013.05.099 [94] JASSO M, BAKOS D, STASTNA J, et al. Conventional asphalt modified by physical mixtures of linear SBS and montmorillonite[J]. Applied Clay Science, 2012, 70: 37-44. doi: 10.1016/j.clay.2012.09.004 [95] 《中国公路学报》编辑部. 中国道路工程学术研究综述·2013[J]. 中国公路学报, 2013, 26(3): 1-36. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201303003.htmEditorial Office of China Journal of Highway and Transport. Review on China's road engineering research: 2013[J]. China Journal of Highway and Transport, 2013, 26(3): 1-36. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201303003.htm [96] 王鹏. 碳纳米管/聚合物复合改性沥青界面增强机制及流变特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.WANG Peng. Interfacial enhancement mechanism and rheological properties of composited polymer modified asphalt with carbon nanotubes[D]. Harbin: Harbin Institute of Technology, 2017. (in Chinese) [97] DU P F, ZHANG H L, XU H B. The investigation of microstructures and situ thermal aging mechanism of organic rectorite modified bitumen[J]. Petroleum Science and Technology, 2014, 32(6): 745-752. doi: 10.1080/10916466.2013.829857 [98] ZHANG Heng-long, SHI Cai-jun, HAN Jun, et al. Effect of organic layered silicates on flame retardancy and aging properties of bitumen[J]. Construction and Building Materials, 2013, 40: 1151-1155. doi: 10.1016/j.conbuildmat.2012.11.097 [99] KOVANDA F, JINDOVÁ E, LANG K, et al. Preparation of layered double hydroxides intercalated with organic anions and their application in LDH/poly(butyl methacrylate) nanocomposites[J]. Applied Clay Science, 2010, 48(1/2): 260-270. [100] ABDULLAH M E, ZAMHARI K A, HAININ M R, et al. Engineering properties of asphalt binders containing nanoclay and chemical warm-mix asphalt additives[J]. Construction and Building Materials, 2016, 112: 232-240. doi: 10.1016/j.conbuildmat.2016.02.089 [101] ZHANG Heng-long, ZHANG Dong-mei, ZHU Chong-zheng. Properties of bitumen containing various amounts of organic montmorillonite[J]. Journal of Materials in Civil Engineering, 2015, 27(11): 04015010. doi: 10.1061/(ASCE)MT.1943-5533.0001261 [102] AKBARI A, MODARRES A. Effect of clay and lime nano-additives on the freeze-thaw durability of hot mix asphalt[J]. Road Materials and Pavement Design, 2017, 18(3): 646-669. doi: 10.1080/14680629.2016.1182939 [103] ISKENDER E. Evaluation of mechanical properties of nano-clay modified asphalt mixtures[J]. Measurement, 2016, 93: 359-371. doi: 10.1016/j.measurement.2016.07.045 [104] YU Jian-ying, ZENG Xuan, WU Shao-peng, et al. Preparation and properties of montmorillonite modified asphalts[J]. Materials Science and Engineering A, 2007, 447(1/2): 233-238. [105] ASHISH P K, SINGH D, BOHM S. Investigation on influence of nanoclay addition on rheological performance of asphalt binder[J]. Road Materials and Pavement Design, 2017, 18(5): 1007-1026 doi: 10.1080/14680629.2016.1201522 [106] JAHROMI S G, KHODAⅡ A. Effects of nanoclay on rheological properties of bitumen binder[J]. Construction and Building Materials, 2009, 23(8): 2894-2904. doi: 10.1016/j.conbuildmat.2009.02.027 [107] ZARE-SHAHABADI A, SHOKUHFAR A, EBRAHIMINEJAD S. Preparation and rheological characterization of asphalt binders reinforced with layered silicate nanoparticles[J]. Construction and Building Materials, 2010, 24(7): 1239-1244. doi: 10.1016/j.conbuildmat.2009.12.013 [108] ZHANG Heng-long, JIA Xiao-juan, YU Jian-ying, et al. Effect of expanded vermiculite on microstructures and aging properties of styrene-butadiene-styrene copolymer modified bitumen[J]. Construction and Building Materials, 2013, 40: 224-230. doi: 10.1016/j.conbuildmat.2012.09.103 [109] SANTAGATA E, BAGLIERI O, TSANTILIS L, et al. Effect of sonication on high temperature properties of bituminous binders reinforced with nano-additives[J]. Construction and Building Materials, 2015, 75: 395-403. doi: 10.1016/j.conbuildmat.2014.11.021 [110] SANTAGATA E, BAGLIERI O, TSANTILIS L, et al. Bituminous-based nanocomposites with improved high-temperature properties[J]. Composites Part B: Engineering, 2016, 99: 9-16. doi: 10.1016/j.compositesb.2016.05.020 [111] FARIAS L G A T, LEITINHO J L, AMONI B C, et al. Effects of nanoclay and nanocomposites on bitumen rheological properties[J]. Construction and Building Materials, 2016, 125: 873-883. doi: 10.1016/j.conbuildmat.2016.08.127 [112] GALOOYAK S S, DABIR B, NAZARBEYGI A E, et al. The effect of nanoclay on rheological properties and storage stability of SBS-modified bitumen[J]. Petroleum Science and Technology, 2011, 29(8): 850-859. doi: 10.1080/10916460903502449 [113] GOLESTANI B, NEJAD F M, GALOOYAK S S. Performance evaluation of linear and nonlinear nanocomposite modified asphalts[J]. Construction and Building Materials, 2012, 35: 197-203. doi: 10.1016/j.conbuildmat.2012.03.010 [114] 韩萍, 谷正, 刘东明, 等. 纳米OMMT/SBS/沥青复合材料的性能研究[J]. 青岛大学学报(自然科学版), 2014, 27(3): 39-39. https://www.cnki.com.cn/Article/CJFDTOTAL-QDDD201403009.htmHAN Ping, GU Zheng, LIU Dong-ming, et al. Research on properties of nano-OMMT/SBS/asphalt composites[J]. Journal of Qingdao University (Natural Science Edition), 2014, 27(3): 39-39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QDDD201403009.htm [115] ELSHEREAFY E, EL-ZAYAT M M, SHALTOUT N A, et al. Effect of gamma radiation on the properties of ethylene propylene diene monomer/styrene butadiene rubber/waste polyethylene/clay nanocomposites[J]. Journal of Radioanalytical and Nuclear Chemistry, 2016, 307: 1325-1333. doi: 10.1007/s10967-015-4320-1 [116] 肖新颜, 杨泽清. 有机蒙脱土/废胶粉复合改性沥青的性能[J]. 华南理工大学学报(自然科学版), 2013, 41(6): 116-120. doi: 10.3969/j.issn.1000-565X.2013.06.018XIAO Xin-yan, YANG Ze-qing. Properties of organic montmorillonite/crumb rubber compound modified asphalt[J]. Journal of South China University of Technology (Natural Science Edition), 2013, 41(6): 116-120. (in Chinese) doi: 10.3969/j.issn.1000-565X.2013.06.018 [117] 刘超. 纳米蒙脱土(OMMT)/SBS改性沥青流变特性研究[D]. 大连: 大连海事大学, 2016.LIU Chao. Study on rheological properties of OMMT/SBS modified asphalt[D]. Dalian: Dalian Maritime University, 2016. (in Chinese) [118] ZHANG Deng-ke, XIAO Xin-yan, CUI Ying. Isocyanate-functionalised montmorillonite as a reactive asphalt modifier[J]. Polymers and Polymer Composites, 2017, 25(5): 405-417. doi: 10.1177/096739111702500509 [119] YU Jian-ying, ZENG Xuan, WU Shao-peng, et al. Preparation and properties of montmorillonite modified asphalts[J]. Materials Science and Engineering A, 2007, 447(1/2): 233-238. [120] HONG Hao-kai, ZHANG Heng-long, ZHANG Shuai. Effect of multi-dimensional nanomaterials on the aging behavior of asphalt by atomic force microscope[J]. Construction and Building Materials, 2020, 260: 120389. doi: 10.1016/j.conbuildmat.2020.120389 [121] CRUCHO J M L, NEVES J M C, CAPITĀO S D, et al. Mechanical performance of asphalt concrete modified with nanoparticles: nanosilica, zero-valent iron and nanoclay[J]. Construction and Building Materials, 2018, 181: 309-318. doi: 10.1016/j.conbuildmat.2018.06.052 [122] 张恒龙, 余剑英, 李斌, 等. 有机化蒙脱土对沥青力延度性能的影响[J]. 武汉理工大学学报, 2010, 32(18): 49-52. doi: 10.3963/j.issn.1671-4431.2010.18.013ZHANG Heng-long, YU Jian-ying, LI Bin, et al. Effect of organo-montmorillonites on force ductility properties of asphalt[J]. Journal of Wuhan University of Technology, 2010, 32(18): 49-52. (in Chinese) doi: 10.3963/j.issn.1671-4431.2010.18.013 [123] 谭彦卿. 膨润土基沥青改性剂的制备及其机理研究[D]. 长沙: 长沙理工大学, 2018.TAN Yan-qing. The preparation of montmorillonite asphalt modifier and mechanism research[D]. Changsha: Changsha University of Science and Technology, 2018. (in Chinese) [124] SURESHKUMAR M S, FILIPPI S, POLACCO G, et al. Internal structure and linear viscoelastic properties of EVA/asphalt nanocomposites[J]. European Polymer Journal, 2010, 46(4): 621-633. doi: 10.1016/j.eurpolymj.2009.12.024 [125] ZAPIEN-CASTILLO S, RIVERA-ARMENTA J L, CHÁVEZ-CINCO M Y, et al. Physical and rheological properties of asphalt modified with SEBS/montmorillonite nanocomposite[J]. Construction and Building Materials, 2016, 106: 349-356. doi: 10.1016/j.conbuildmat.2015.12.099 [126] ZHANG Bao-chang, XI Man, ZHANG De-wen, et al. The effect of styrene-butadiene-rubber/montmorillonite modification on the characteristics and properties of asphalt[J]. Construction and Building Materials, 2009, 23(10): 3112-3117. doi: 10.1016/j.conbuildmat.2009.06.011 [127] FANG Chang-qing, YU Rui-en, LI Yan, et al. Preparation and characterization of an asphalt-modifying agent with waste packaging polyethylene and organic montmorillonite[J]. Polymer Testing, 2013, 32(5): 953-960. doi: 10.1016/j.polymertesting.2013.04.006 [128] JASSO M, BAKOS D, MACLEOD D, et al. Preparation and properties of conventional asphalt modified by physical mixtures of linear SBS and montmorillonite clay[J]. Construction and Building Materials, 2013, 38: 759-765. doi: 10.1016/j.conbuildmat.2012.09.043 [129] 邢利霞. 蒙脱土/SBS复合改性沥青的制备及性能研究[J]. 新型建筑材料, 2019, 46(10): 113-116. doi: 10.3969/j.issn.1001-702X.2019.10.026XING Li-xia. Study on preparation and performance of montmorillonite and sbs composite modified asphalt[J]. New Building Materials, 2019, 46(10): 113-116. (in Chinese) doi: 10.3969/j.issn.1001-702X.2019.10.026 [130] WU Shao-peng, LIU Tian-gui, PANG Ling, et al. Study of high temperature performance and low temperature property on layered silicate modified asphalt concrete[J]. Key Engineering Materials, 2012, 509: 189-193. doi: 10.4028/www.scientific.net/KEM.509.189 [131] JAHROMI S G, ANDALIBIZADE B, KHODAⅡ A. Mechanical behavior of nanoclay modified asphalt mixtures[J]. Journal of Testing and Evaluation, 2010, 38(5): 549-557. [132] TAN Yi-qiu, GUO Meng. Using surface free energy method to study the cohesion and adhesion of asphalt mastic[J]. Construction and Building Materials, 2013, 47(5): 254-260. [133] ASHISH P K, SINGH D, BOHM S. Evaluation of rutting, fatigue and moisture damage performance of nanoclay modified asphalt binder[J]. Construction and Building Materials, 2016, 113: 341-350. doi: 10.1016/j.conbuildmat.2016.03.057 [134] GOLESTANI B, NAM B H, NEJAD F M, et al. Nanoclay application to asphalt concrete: characterization of polymer and linear nanocomposite-modified asphalt binder and mixture[J]. Construction and Building Materials, 2015, 91: 32-38. doi: 10.1016/j.conbuildmat.2015.05.019 [135] BABAGOLI R, MOHAMMADI R. Laboratory evaluation of the effect of styrene-butadiene-styrene-montmorillonite nanocomposite on rheological behavior of bitumen and performance of stone matrix asphalt mixtures[J]. Canadian Journal of Civil Engineering, 2017, 44: 736-742. doi: 10.1139/cjce-2017-0041 [136] YU Jian-ying, FENG Peng-cheng, ZHANG Heng-long, et al. Effect of organo-montmorillonite on aging properties of asphalt[J]. Construction and Building Materials, 2009, 23(7): 2636-2640. doi: 10.1016/j.conbuildmat.2009.01.007 [137] ZHANG Heng-long, ZHANG Dong-mei, ZHU Chong-zheng. Properties of bitumen containing various amounts of organic montmorillonite[J]. Journal of Materials in Civil Engineering, 2015, 27(11): 04015010. doi: 10.1061/(ASCE)MT.1943-5533.0001261 [138] LIU Gang, WU Shao-peng, VEN M, et al. Influence of sodium and organo-montmorillonites on the properties of bitumen[J]. Applied Clay Science, 2010, 49(1/2): 69-73. [139] ZHANG H L, YU J Y, KUANG D L. The effect of sodium and organic montmorillonites on the thermal aging properties of bitumen[J]. Petroleum Science and Technology, 2013, 31(20): 2074-2081. doi: 10.1080/10916466.2012.678538 [140] YU Jian-ying, WANG Xiao, HU Liang, et al. Effect of various organomodified montmorillonites on the properties of montmorillonite/bitumen nanocomposites[J]. Journal of Materials in Civil Engineering, 2010, 22(8): 788-793. doi: 10.1061/(ASCE)MT.1943-5533.0000012 [141] ZHANG Heng-long, ZHU Chong-zheng, TAN Bang-yao, et al. Effect of organic layered silicate on microstructures and aging properties of styrene-butadiene-styrene copolymer modified bitumen[J]. Construction and Building Materials, 2014, 68: 31-38. doi: 10.1016/j.conbuildmat.2014.06.038 [142] ZHANG Can-lin, YU Jian-ying, XU Xiong, et al. Effect of surface organic modified layered double hydroxide on UV ageing resistance of bitumen[J]. Petroleum Science and Technology, 2017, 35(5): 488-494. doi: 10.1080/10916466.2016.1265558 [143] ZHANG Can-lin, YU Jian-ying, FENG Kai, et al. Synthesis and characterization of triethoxyvinylsilane surface modified layered double hydroxides and application in improving UV aging resistance of bitumen[J]. Applied Clay Science, 2016, 120: 1-8. doi: 10.1016/j.clay.2015.11.013 [144] SONG Xu, YU Jian-ying, HU Chang-bin, et al. Performance evaluation of asphalt containing layered double hydroxides with different zinc ratio in the host layer[J]. Petroleum Science and Technology, 2017, 35(2): 127-133. doi: 10.1080/10916466.2016.1248774