留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

虚拟轨道列车超螺旋滑模自适应导向控制

张众华 杨蔡进 张卫华

张众华, 杨蔡进, 张卫华. 虚拟轨道列车超螺旋滑模自适应导向控制[J]. 交通运输工程学报, 2023, 23(5): 163-182. doi: 10.19818/j.cnki.1671-1637.2023.05.011
引用本文: 张众华, 杨蔡进, 张卫华. 虚拟轨道列车超螺旋滑模自适应导向控制[J]. 交通运输工程学报, 2023, 23(5): 163-182. doi: 10.19818/j.cnki.1671-1637.2023.05.011
ZHANG Zhong-hua, YANG Cai-jin, ZHANG Wei-hua. Adaptive guidance control of super-twisting sliding mode for virtual track train[J]. Journal of Traffic and Transportation Engineering, 2023, 23(5): 163-182. doi: 10.19818/j.cnki.1671-1637.2023.05.011
Citation: ZHANG Zhong-hua, YANG Cai-jin, ZHANG Wei-hua. Adaptive guidance control of super-twisting sliding mode for virtual track train[J]. Journal of Traffic and Transportation Engineering, 2023, 23(5): 163-182. doi: 10.19818/j.cnki.1671-1637.2023.05.011

虚拟轨道列车超螺旋滑模自适应导向控制

doi: 10.19818/j.cnki.1671-1637.2023.05.011
基金项目: 

国家重点研发计划 2018YFB1201603

四川省科技计划项目 2020JDRC0008

四川省科技计划项目 2020YFG0023

详细信息
    作者简介:

    张众华(1989-),男,四川乐山人,西南交通大学工学博士研究生,从事车辆动力学及其控制研究

    张卫华(1961-),男,江苏宜兴人,西南交通大学教授,工学博士

    通讯作者:

    杨蔡进(1978-),男,江苏金湖人,西南交通大学副研究员,工学博士

  • 中图分类号: U482.2

Adaptive guidance control of super-twisting sliding mode for virtual track train

Funds: 

National Key Research and Development Program of China 2018YFB1201603

Science and Technology Plan Project of Sichuan Province 2020JDRC0008

Science and Technology Plan Project of Sichuan Province 2020YFG0023

More Information
Article Text (Baidu Translation)
  • 摘要: 为提高虚拟轨道列车在参数不确定和未知外部扰动环境中自导向控制的鲁棒性能,针对列车运行中多输入多输出的过驱动控制问题,基于拉格朗日方程建立了多铰接列车的非线性导向控制模型,将等效轮胎侧偏力作为控制输入量;利用虚拟轨道离散点坐标与列车运行速度,建立了计算列车位置、速度与加速度的参考模型,设计了独立的列车导向控制器与纵向速度控制器;利用李雅普诺夫方法,基于传统滑模控制(SMC)和自适应超螺旋滑模(ASTSM)分别设计了2种列车导向控制器,利用轮胎逆模型计算了线控转向系统的转角控制量;建立了轮速分配模型,基于参考速度矢量,将列车纵向速度控制转换为每个轮毂电机的转速与电磁转矩控制;建立了7节编组列车的动力学仿真模型,通过变速和综合线路测试分析了轮毂电机转速和电磁转矩的响应过程,研究了车辆模块之间铰接作用力的分布规律,比较了SMC和ASTSM在参数不确定和未知外部扰动工况下的鲁棒性能。研究结果表明:建立的列车导向控制模型、运动参考模型与轮速分配模型是有效的;车辆模块的纵向速度跟踪误差小于1.5 km·h-1,车轮转速跟踪误差率小于1%;与SMC相比,当存在未建模动态、50%负载变化与未知扰动时,提出的ASTSM具有更好的自适应鲁棒性能,使车轴中心位置偏差能在有限时间内收敛至0附近;在侧向力干扰下,ASTSM的车轴中心偏差均方根与最大值分别为10和42 mm,分别降低了82%和61%;ASTSM在曲线路段中无明显的稳态偏差,且车间铰接角能一致地收敛至稳态值,保证了虚拟轨道列车的运行稳定性。

     

  • 图  1  虚拟轨道列车

    Figure  1.  Virtual track train

    图  2  虚拟轨道列车运行控制方案

    Figure  2.  Operation control scheme of virtual track train

    图  3  n节编组列车单轨线模型

    Figure  3.  Single-track train model with n modules

    图  4  基于车辆运动学的转速分配

    Figure  4.  Rotating speed allocation based on vehicle kinematics

    图  5  虚拟轨道列车动力学仿真模型

    Figure  5.  Dynamics simulation model of virtual track train

    图  6  综合测试线路

    Figure  6.  Compound testing path

    图  7  车辆模块的纵向速度与偏差

    Figure  7.  Longitudinal velocities and errors of vehicle modules

    图  8  车轮转速响应

    Figure  8.  Responses of wheel speeds

    图  9  电磁转矩响应

    Figure  9.  Responses of electromagnetic torques

    图  10  车间铰接力响应

    Figure  10.  Responses of hinge forces

    图  11  工况1中SMC与ASTSM的跟踪偏差对比

    Figure  11.  Comparison of tracking errors between SMC and ASTSM in Case 1

    图  12  工况2中SMC与ASTSM的跟踪偏差对比

    Figure  12.  Comparison of tracking errors between SMC and ASTSM in Case 2

    图  13  工况3中SMC与ASTSM的跟踪偏差对比

    Figure  13.  Comparison of tracking errors between SMC and ASTSM in Case 3

    图  14  不同工况下ASTSM性能对比

    Figure  14.  Comparison of ASTSM performances under different cases

    图  15  α2在0~45 s的响应

    Figure  15.  Responses of α2 in 0-45 s

    图  16  工况2与3的自适应增益系数ακ对比

    Figure  16.  Comparison of ακunder Cases 1 and 2

    图  17  ASTSM作用下的等效车轮偏转角响应

    Figure  17.  Responses of equivalent wheel steering angles under ASTSM

    图  18  工况3中SMC作用下的铰接角响应

    Figure  18.  Responses of hinge angles under SMC in Case 3

    图  19  工况3中ASTSM的车间铰接角响应

    Figure  19.  Responses of hinge angles under ASTSM in Case 3

    表  1  综合测试线路参数

    Table  1.   Parameters of compound testing path

    路段 线路参数/m 速度/(km·h-1)
    P1 路段长度L1 = 60 20
    P2 曲率半径R1 = 35 20
    P3 线路长度L2 = 100 30
    P4 曲率半径R2 = 80 30
    P5 线路长度L3 = 115 15
    P6 曲率半径R3 = 25 15
    P7 线路长度L4 = 135 54
    P8 曲率半径R4 = 250 54
    P9 线路长度L5 = 150 0
    下载: 导出CSV
  • [1] 冯江华. 轨道交通装备技术演进与智能化发展[J]. 控制与信息技术, 2019(1): 1-6, 11. https://www.cnki.com.cn/Article/CJFDTOTAL-BLJS201901002.htm

    FENG Jiang-hua. Technical evolution and intelligent development of rail transit equipments[J]. Control and Information Technology, 2019(1): 1-6, 11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BLJS201901002.htm
    [2] YIN Zhong-hui, ZHANG Ji-ye, LU Hai-ying. Establishment and comparison of a spatial dynamics model for virtual track train with different steering modes[J]. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-Body Dynamics, 2021, 235(3): 481-498. doi: 10.1177/14644193211024031
    [3] LENG Han, REN Li-hui, JI Yuan-jin. Cascade modular path following control strategy for gantry virtual track train: time-delay stability and forward predictive model[J]. IEEE Transactions on Vehicular Technology, 2022, 71(7): 6969-6983. doi: 10.1109/TVT.2022.3167921
    [4] 孙帮成, 王文军, 刘志明, 等. 基于全轮差动转向的虚拟轨道汽车列车设计[J]. 北京交通大学学报, 2018, 42(6): 67-74. https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT201806010.htm

    SUN Bang-cheng, WANG Wen-jun, LIU Zhi-ming, et al. Design of the virtual-rail train-like vehicle based on all-wheel differential steering[J]. Journal of Beijing Jiaotong University, 2018, 42(6): 67-74. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT201806010.htm
    [5] 袁希文, 冯江华, 胡云卿, 等. 智轨电车自动循迹感知与控制系统[J]. 控制与信息技术, 2020(1): 19-26. https://www.cnki.com.cn/Article/CJFDTOTAL-BLJS202001004.htm

    YUAN Xi-wen, FENG Jiang-hua, HU Yun-qing, et al. Perception and control module of the automatic tracking system for autonomous-rail rapid tram[J]. Control and Information Technology, 2020(1): 19-26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BLJS202001004.htm
    [6] 崔涛, 王淇, 刘学刚, 等. 虚拟轨道列车多轴协同预瞄循迹控制方法[J]. 北京交通大学学报, 2022, 46(1): 139-146. https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT202201016.htm

    CUI Tao, WANG Qi, LIU Xue-gang, et al. Multi-axle coordination-based pre-targeting path-tracking control method for virtual railway vehicles[J]. Journal of Beijing Jiaotong University, 2022, 46(1): 139-146. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT202201016.htm
    [7] WANG Cheng-ping, ZHANG Ji-min, ZHOU He-chao, et al. Analysis of the running quality and road friendliness of the virtual track train in multiple running stages between stations[J]. Journal of Mechanical Science and Technology, 2022, 36(2): 593-605. doi: 10.1007/s12206-022-0107-9
    [8] YIN Zhong-hui, ZHANG Ji-ye, LU Hai-ying, et al. Dynamics modeling and analysis of a four-wheel independent motor-drive virtual-track train[J]. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-Body Dynamics, 2021, 235(1): 134-149. doi: 10.1177/1464419320964014
    [9] YIN Zhong-hui, ZHANG Ji-ye, SUI Hao. Stochastic responses characteristics of a virtual track train excited by road irregularities[J]. IEEE Transactions on Vehicular Technology, 2022, 71(8): 8152-8163. doi: 10.1109/TVT.2022.3174732
    [10] 彭京, 冯江华, 肖磊, 等. 智轨电车自主导向与轨迹跟随技术研究[J]. 控制与信息技术, 2020(1): 27-31. https://www.cnki.com.cn/Article/CJFDTOTAL-BLJS202001005.htm

    PENG Jing, FENG Jiang-hua, XIAO Lei, et al. Research on autonomous guidance and track following technology of autonomous-rail rapid tram[J]. Control and Information Technology, 2020(1): 27-31. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BLJS202001005.htm
    [11] 孙帮成, 刘志明, 崔涛, 等. 一种汽车列车结构及其路径跟踪控制方法[J]. 机械工程学报, 2018, 54(24): 181-188. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201824022.htm

    SUN Bang-cheng, LIU Zhi-ming, CUI Tao, et al. New structure for train-like vehicle and its path tracking method[J]. Journal of Mechanical Engineering, 2018, 54(24): 181-188. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201824022.htm
    [12] KANEKO T, ⅡZUKA H, KAGEYAMA I. Steering control for advanced guideway bus system with all-wheel steering system[J]. Vehicle System Dynamics, 2006, 44(1): 741-746.
    [13] 张立伟, 杨露明, 宋佩佩, 等. 多铰接结构的现代无轨列车路径跟随研究[J]. 北京交通大学学报, 2021, 45(4): 137-145. https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT202104017.htm

    ZHANG Li-wei, YANG Lu-ming, SONG Pei-pei, et al. Research on path following of modern trackless train with multi-articulated structure[J]. Journal of Beijing Jiaotong University, 2021, 45(4): 137-145. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT202104017.htm
    [14] LENG Han, REN Li-hui, JI Yuan-jin. Analysis methodology of compatibility between motion control and mechanical architecture of a newly designed gantry virtual track train and the path-tracking control strategy[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2022, 236(13): 6985-7005. doi: 10.1177/09544062211070175
    [15] ESMAEILI N, KAZEMI R, TABATABAEI OREH S H. An adaptive sliding mode controller for the lateral control of articulated long vehicles[J]. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-Body Dynamics, 2019, 233(3): 487-515. doi: 10.1177/1464419318806801
    [16] MARUMO Y, YOKOTA T, AOKI A. Improving stability and lane-keeping performance for multi-articulated vehicles using vector follower control[J]. Vehicle System Dynamics, 2020, 58(12): 1859-1872.
    [17] ISLAM M M, DING Xue-jun, HE Yu-ping. A closed-loop dynamic simulation-based design method for articulated heavy vehicles with active trailer steering systems[J]. Vehicle System Dynamics, 2012, 50(5): 675-697.
    [18] NI Zhi-tuo, HE Yu-ping. Design and validation of a robust active trailer steering system for multi-trailer articulated heavy vehicles[J]. Vehicle System Dynamics, 2019, 57(10): 1545-1571.
    [19] LIU Xuan-zuo, MADHUSUDHANAN A K, CEBON D. Minimum swept-path control for autonomous reversing of a tractor semi-trailer[J]. IEEE Transactions on Vehicular Technology, 2019, 68(5): 4367-4376.
    [20] RITZEN P, ROEBROEK E, VAN DE WOUW N, et al. Trailer steering control of a tractor-trailer robot[J]. IEEE Transactions on Control Systems Technology, 2016, 24(4): 1240-1252.
    [21] CANALE M, FAGIANO L, FERRARA A, et al. Comparing internal model control and sliding-mode approaches for vehicle yaw control[J]. IEEE Transactions on Intelligent Transportation Systems, 2009, 10(1): 31-41.
    [22] ZHAO Yu-zhuang, CHEN Si-zhong, SHIM T. Investigation of trailer yaw motion control using active front steer and differential brake[J]. SAE International Journal of Materials and Manufacturing, 2011, 4(1): 1057-1067.
    [23] FALLAHA C J, SAAD M, KANAAN H Y, et al. Sliding-mode robot control with exponential reaching law[J]. IEEE Transactions on Industrial Electronics, 2011, 58(2): 600-610.
    [24] 任殿波, 张京明, 崔胜民, 等. 车辆换道纵横向耦合控制[J]. 交通运输工程学报, 2009, 9(3): 112-116. doi: 10.19818/j.cnki.1671-1637.2009.03.022

    REN Dian-bo, ZHANG Jing-ming, CUI Sheng-min, et al. Longitudinal and lateral coupling control for lane change[J]. Journal of Traffic and Transportation Engineering, 2009, 9(3): 112-116. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2009.03.022
    [25] SHTESSEL Y, TALEB M, PLESTAN F. A novel adaptive-gain supertwisting sliding mode controller: methodology and application[J]. Automatica, 2012, 48(5): 759-769.
    [26] GONZALEZ T, MORENO J A, FRIDMAN L. Variable gain super-twisting sliding mode control[J]. IEEE Transactions on Automatic Control, 2012, 57(8): 2100-2105.
    [27] MORENO J A, OSORIO M. Strict Lyapunov functions for the super-twisting algorithm[J]. IEEE Transactions on Automatic Control, 2012, 57(4): 1035-1040.
    [28] HU Chuan, WANG Zhen-feng, QIN Ye-chen, et al. Lane keeping control of autonomous vehicles with prescribed performance considering the rollover prevention and input saturation[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(7): 3091-3103.
    [29] JUJNOVICH B A, CEBON D. Path-following steering control for articulated vehicles[J]. Journal of Dynamic Systems, Measurement, and Control, 2013, 135(3): 031006.
    [30] DARBA A, DE BELIE F, D'HAESE P, et al. Improved dynamic behavior in BLDC drives using model predictive speed and current control[J]. IEEE Transactions on Industrial Electronics, 2016, 63(2): 728-740.
    [31] FASIL M, MIJATOVIC N, JENSEN B B, et al. Nonlinear dynamic model of PMBLDC motor considering core losses[J]. IEEE Transactions on Industrial Electronics, 2017, 64(12): 9282-9290.
  • 加载中
图(19) / 表(1)
计量
  • 文章访问数:  743
  • HTML全文浏览量:  296
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-20
  • 网络出版日期:  2023-11-17
  • 刊出日期:  2023-10-25

目录

    /

    返回文章
    返回