-
摘要: 为了计算在高速车辆移动荷载作用下板式轨道的动力响应, 将轨道板视为线性粘弹性连续支承梁, 将钢轨视为线性粘弹性点支承梁, 将钢轨和轨道板统一划分为有限单元, 基于车辆-轨道耦合动力学理论, 利用弹性系统动力学总势能不变值原理, 建立了高速列车-板式轨道的垂向耦合动力学方程, 计算了车辆通过板式轨道钢轨焊接区短波不平顺时的轮轨动力学响应。仿真结果表明: 与其他成熟仿真方法相比较, 响应变化趋势与幅值基本一致, 表明该方法可行。
-
关键词:
- 高速铁路 /
- 板式轨道 /
- 有限单元法 /
- 车辆-轨道耦合动力学 /
- 动力响应
Abstract: In order to calculate the dynamic responses of slab track subjected to moving vehicular loads, slab was treated as linear viscoelastic continuously supported beam, rail was modeled as linear viscoelastic discretely supported beam, track and slab were regarded as a whole and represented by using finite elements, vehicle-track coupling dynamics theory and total potential energy principle with stationary value in elastic system dynamics were applied, a vertical dynamic coupling model of high-speed train and slab track was established, its dynamics equations were set up, and wheel and rail dynamic responses at the weld joint of slab track were calculated.Simulation result shows that comparing with existing methods, the variational trends and ranges of their computation results are basically consistent, so the model is feasible. -
表 1 计算参数
Table 1. Computation parameters
参数 取值 车体质量Mc/kg 31 994 轮对质量Mw/kg 1 650 构架点头惯量Jt/(kg·m2) 3 200 一系悬挂阻尼Cs1/(N·s·m-1) 8.0×104 二系悬挂阻尼Cs2/(N·s·m-1) 1.0×105 转向架轴距之半Lt/m 1.25 钢轨弹性模量Er/(N·m-2) 2.1×1011 钢轨单位长度质量mr/(kg·m-1) 60.8 轨下垫层阻尼Cp/(N·s·m-1) 3.625×104 轨道板截面惯性矩Is/m4 6.687 5×10-4 CA砂浆刚度KCA/(N·m-1) 1.25×109 轨道板长度ls/m 4.95 构架质量Mt/kg 3 333 车体点头惯量Jc/(kg·m2) 2.1×106 一系悬挂刚度Ks1/(N·m-1) 2.36×106 二系悬挂刚度Ks2/(N·m-1) 8.0×105 车辆定距之半Lc/m 8.75 车轮半径Rw/m 0.43 钢轨截面惯性矩Ir/m4 3.09×10-5 轨下垫层刚度Kp/(N·m-1) 6×107 轨道板弹性模量Es/(N·m-2) 3.5×1010 轨道板质量ms/kg 2 500 CA砂浆阻尼CCA/(N·s·m-1) 8.3×104 钢轨扣件间距l/m 0.625 -
[1] 翟婉明, 韩卫军, 蔡成标, 等. 高速铁路板式轨道动力特性研究[J]. 铁道学报, 1999, 21(6): 65-69. doi: 10.3321/j.issn:1001-8360.1999.06.016Zhai Wan-ming, Han Wei-jun, Cai Cheng-biao, et al. Dynamic properties of high-speed railway slab tracks[J]. Journal of the China Railway Society, 1999, 21(6): 65-69. (in Chinese) doi: 10.3321/j.issn:1001-8360.1999.06.016 [2] 娄平, 曾庆元. 移动荷载作用下板式轨道的有限元分析[J]. 交通运输工程学报, 2004, 4(1): 29-33. doi: 10.3321/j.issn:1671-1637.2004.01.008Lou Ping, Zeng Qing-yuan. Finite element analysis of slab track subjected to moving load[J]. Journal of Traffic and Transportation Engineering, 2004, 4(1): 29-33. (in Chinese) doi: 10.3321/j.issn:1671-1637.2004.01.008 [3] 娄平, 曾庆元. 移动荷载作用下连续粘弹性基础支承无限长梁的有限元分析[J]. 交通运输工程学报, 2003, 3(2): 1-6. doi: 10.3321/j.issn:1671-1637.2003.02.001Lou Ping, Zeng Qing-yuan. Finite element analysis of infinitely long beam resting on continuous viscoelastic foundation subjected to moving loads[J]. Journal of Traffic and Transportation Engineering, 2003, 3(2): 1-6. (in Chinese) doi: 10.3321/j.issn:1671-1637.2003.02.001 [4] 刘玉祥, 陈秀方, 贾兴明, 等. 铁路板式轨道结构平面有限元分析[J]. 石家庄铁道学院学报, 2006, 19(2): 54-58. doi: 10.3969/j.issn.2095-0373.2006.02.014Liu Yu-xiang, Chen Xiu-fang, Jia Xing-ming, et al. Analysis of plane FEM on structures of slab trackin railway[J]. Journal of Shijiazhuang Railway Institute, 2006, 19(2): 54-58. (in Chinese) doi: 10.3969/j.issn.2095-0373.2006.02.014 [5] 翟婉明. 车辆-轨道耦合动力学理论及其应用[J]. 中国铁道科学, 1996, 17(2): 58-73. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK602.006.htmZhai Wan-ming. Locomotive-and-track system coupling dynamics and its application to the study of locomotive performance[J]. China Railway Science, 1996, 17(2): 58-73. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK602.006.htm [6] 曾庆元. 弹性系统总势能不变值原理[J]. 华中理工大学学报: 自然科学版, 2000, 28(1): 1-3. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG200001000.htmZeng Qing-yuan. The principle of total potential energy withstationary value in elastic system dynamics[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2000, 28(1): 1-3. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG200001000.htm [7] 曾庆元. 弹性系统动力学总势能不变值原理与列车桥梁时变系统振动分析[J]. 铁道建筑技术, 2001, 8(1): 1-6. doi: 10.3969/j.issn.1009-4539.2001.01.001Zeng Qing-yuan. The principle of total potential energy with stationary value in elastic system dynamics and the vibration analysis of train-bridge time-varying system[J]. Railway Construction Technology, 2001, 8(1): 1-6. (in Chinese) doi: 10.3969/j.issn.1009-4539.2001.01.001 [8] 翟婉明. 车辆-轨道垂向系统的统一模型及其耦合动力学原理[J]. 铁道学报, 1992, 14(3): 10-21. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB199203001.htmZhai Wan-ming. The vertical model of vehicle-track systemandits coupling dynamics[J]. Journal of the China Railway Society, 1992, 14(3): 10-21. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB199203001.htm [9] 向俊, 曾庆元. 关于机车车辆-轨道系统运动方程的建立[J]. 长沙铁道学院学报, 2000, 18(4): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD200004000.htmXiang Jun, Zeng Qing-yuan. On building equations of motion of locomotive vehicle-track system[J]. Journal of Changsha Railway University, 2000, 18(4): 1-5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD200004000.htm [10] 娄平, 郑祖勇, 曾庆元. 利用形函数性质产生直梁单元形函数的方法[J]. 吉首大学学报: 自然科学版, 2004, 25(1): 22-25. https://www.cnki.com.cn/Article/CJFDTOTAL-JSDN200401006.htmLou Ping, Zheng Zu-yong, Zeng Qing-yuan. A method for generating straight beam element shape functions by means of its properties[J]. Journal of Jishou University: Natural Science Edition, 2004, 25(1): 22-25. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSDN200401006.htm