留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自适应巡航控制车辆跟驰模型综述

秦严严 王昊 王炜 NIDai-heng

秦严严, 王昊, 王炜, NIDai-heng. 自适应巡航控制车辆跟驰模型综述[J]. 交通运输工程学报, 2017, 17(3): 121-130.
引用本文: 秦严严, 王昊, 王炜, NIDai-heng. 自适应巡航控制车辆跟驰模型综述[J]. 交通运输工程学报, 2017, 17(3): 121-130.
QIN Yan-yan, WANG Hao, WANG Wei, NI Dai-heng. Review of car-following models of adaptive cruise control[J]. Journal of Traffic and Transportation Engineering, 2017, 17(3): 121-130.
Citation: QIN Yan-yan, WANG Hao, WANG Wei, NI Dai-heng. Review of car-following models of adaptive cruise control[J]. Journal of Traffic and Transportation Engineering, 2017, 17(3): 121-130.

自适应巡航控制车辆跟驰模型综述

基金项目: 

国家自然科学基金项目 51478113

详细信息
    作者简介:

    秦严严(1989-), 男, 江苏沛县人, 东南大学工学博士研究生, 从事交通流理论研究

    王昊(1980-), 男, 江苏高淳人, 东南大学教授, 工学博士

  • 中图分类号: U491.25

Review of car-following models of adaptive cruise control

More Information
  • 摘要: 分析了自动驾驶汽车自适应巡航控制(Adaptive Cruise Control, ACC) 和协同自适应巡航控制(Cooperative Adaptive Cruise Control, CACC) 车辆跟驰模型, 从系统控制原理、车车通信技术与车间时距方面阐述了ACC与CACC车辆的异同点; 将目前主流ACC/CACC车辆跟驰模型分为3类: 基于智能驾驶的车辆跟驰模型、加州伯克利大学PATH实验室车辆跟驰模型与基于控制论的车辆跟驰模型, 总结3类车辆跟驰模型的建模思路与主要优缺点; 从道路通行能力、交通安全和交通流稳定性3方面, 分析了ACC/CACC车辆对交通流特性的影响, 及其研究现状与未来发展趋势。研究结果表明: 不同的ACC/CACC车辆跟驰模型对通行能力的影响存在较大差别, ACC/CACC车辆有利于提升交通安全性, 但由于缺乏统一的安全性评价指标, 难以量化ACC/CACC车辆对交通安全性的影响程度; 小规模实车试验验证了ACC车辆具有不稳定的交通流特性, 否定了ACC车辆稳定性数值仿真结果, 而数值仿真试验和小规模实车试验均表明CACC车辆可较好提升交通流稳定性, 因此, 完全依赖于计算机仿真试验无法获得令人信服的结论, 实车试验是ACC/CACC研究的必要途径; 为了完善ACC/CACC在交通领域的研究, 应构建不同ACC/CACC车辆比例下的混合交通流基本图模型、智能网联环境下的ACC/CACC车辆跟驰模型建模方法与ACC/CACC混合交通流稳定性解析方法。

     

  • 图  1  ACC系统

    Figure  1.  ACC System

    图  2  PD控制结构

    Figure  2.  PD control structure

    表  1  驾驶人接受比例

    Table  1.   Acceptance proportions of drivers

    下载: 导出CSV

    表  2  基于IDM的ACC车辆跟驰模型参数取值

    Table  2.   Parameter values of ACC car-following models based on IDM

    下载: 导出CSV

    表  3  PATH实验室车辆跟驰模型

    Table  3.   Car-following models of PATH laboratory

    下载: 导出CSV

    表  4  基于控制论的车辆跟驰模型

    Table  4.   Car-following models based on control theory

    下载: 导出CSV

    表  5  ACC车辆对通行能力的影响

    Table  5.   Impacts of ACC vehicles on capacity

    下载: 导出CSV
  • [1] KERNER B S. Experimental features of self-organization in traffic flow[J]. Physical Review Letters, 1998, 81 (17): 3797-3800. doi: 10.1103/PhysRevLett.81.3797
    [2] MAHMASSANI H S. Autonomous vehicles and connected vehicle systems: flow and operations considerations[J]. Transportation Science, 2016, 50 (4): 1140-1162. doi: 10.1287/trsc.2016.0712
    [3] NUNEN E V, KWAKKERNAAT M R J A E, PLOEG J, et al. Cooperative competition for future mobility[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13 (3): 1018-1025. doi: 10.1109/TITS.2012.2200475
    [4] DEY K C, YAN Li, WANG Xu-jie, et al. A review of communication, driver characteristics, and controls aspects of cooperative adaptive cruise control[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17 (2): 491-509. doi: 10.1109/TITS.2015.2483063
    [5] RAJAMANI R, SHLADOVER S E. An experimental comparative study of autonomous and co-operative vehiclefollower control systems[J]. Transportation Research Part C: Emerging Technologies, 2001, 9 (1): 15-31. doi: 10.1016/S0968-090X(00)00021-8
    [6] VINE S L, LIU Xiao-bo, ZHENG Fang-fang, et al. Automated cars: queue discharge at signalized intersections with'assured-clear-distance-ahead'driving strategies[J]. Transportation Research Part C: Emerging Technologies, 2016, 62: 35-54. doi: 10.1016/j.trc.2015.11.005
    [7] VOLLRATH M, SCHLEICHER S, GELAU C. The influence of cruise control and adaptive cruise control on driving behavior—a driving simulator study[J]. Accident Analysis and Prevention, 2011, 43 (3): 1134-1139. doi: 10.1016/j.aap.2010.12.023
    [8] YU Shao-wei, SHI Zhong-ke. The effects of vehicular gap changes with memory on traffic flow in cooperative adaptive cruise control strategy[J]. Physica A: Statistical Mechanics and its Applications, 2015, 428: 206-223. doi: 10.1016/j.physa.2015.01.064
    [9] CHEN Dan-jue, AHN S, CHITTURI M, et al. Towards vehicle automation: roadway capacity formulation for traffic mixed with regular and automated vehicles[J]. Transportation Research Part B: Methodological, 2017, 100: 196-221. doi: 10.1016/j.trb.2017.01.017
    [10] JIA Dong-yao, NGODUY D. Enhanced cooperative carfollowing traffic model with the combination of V2Vand V2I communication[J]. Transportation Research Part B: Methodological, 2016, 90: 172-191. doi: 10.1016/j.trb.2016.03.008
    [11] 张德兆, 王建强, 刘佳熙, 等. 加速度连续型自适应巡航控制模式切换策略[J]. 清华大学学报: 自然科学版, 2010, 50 (8): 1277-1281. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201008034.htm

    ZHANG De-zhao, WANG Jian-qiang, LIU Jia-xi, et al. Switching strategy for adaptive cruise control modes for continuous acceleration[J]. Journal of Tsinghua University: Science and Technology, 2010, 50 (8): 1277-1281. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201008034.htm
    [12] 华雪东, 王炜, 王昊. 考虑车与车互联通讯技术的交通流跟驰模型[J]. 物理学报, 2016, 65 (1): 52-63. doi: 10.3969/j.issn.1672-7940.2016.01.009

    HUA Xue-dong, WANG Wei, WANG Hao. Traffic carfollowing model based on car communication technology[J]. Acta Physica Sinica, 2016, 65 (1): 52-63. (in Chinese). doi: 10.3969/j.issn.1672-7940.2016.01.009
    [13] 王灿, 马钧. 汽车CACC系统的车头时距策略研究[J]. 农业装备与车辆工程, 2015, 53 (2): 60-67. doi: 10.3969/j.issn.1673-3142.2015.02.013

    WANG Can, MA Jun. Study on automotive CACC systems headway policy[J]. Agricultural Equipment and Vehicle Engineering, 2015, 53 (2): 60-67. (in Chinese). doi: 10.3969/j.issn.1673-3142.2015.02.013
    [14] 王昊, 刘振全, 张志学, 等. 考虑双前导车的跟驰与换道联合模型[J]. 东南大学学报: 自然科学版, 2015, 45 (5): 985-989. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201505029.htm

    WANG Hao, LIU Zhen-quan, ZHANG Zhi-xue, et al. Doubel-head car-following and lane-changing combined model[J]. Journal of Southeast University: Natural Science Edition, 2015, 45 (5): 985-989. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201505029.htm
    [15] 金峻臣. 基于ACC系统的跟驰模型改进分析[J]. 科学技术与工程, 2011, 11 (26): 6396-6400. doi: 10.3969/j.issn.1671-1815.2011.26.031

    JIN Jun-chen. Research on improved car-following based on ACC system[J]. Science Technology and Engineering, 2011, 11 (26): 6396-6400. (in Chinese). doi: 10.3969/j.issn.1671-1815.2011.26.031
    [16] 罗莉华. 汽车自适应巡航控制及相应宏观交通流模型研究[D]. 杭州: 浙江大学, 2011.

    LUO Li-hua. Vehicle adaptive cruise control and the corresponding macroscopic traffic flow model[D]. Hangzhou: Zhejiang University, 2011. (in Chinese).
    [17] XIAO Ling-yun, GAO Feng. A comprehensive review of the development of adaptive cruise control systems[J]. Vehicle System Dynamics, 2010, 48 (10): 1167-1192. doi: 10.1080/00423110903365910
    [18] 张智勇, 荣建, 任福田. 跟车模型研究综述[J]. 公路交通科技, 2004, 21 (8): 108-113. doi: 10.3969/j.issn.1002-0268.2004.08.028

    ZHANG Zhi-yong, RONG Jian, REN Fu-tian. Review of car following model research[J]. Journal of Highway and Transportation Research and Development, 2004, 21 (8): 108-113. (in Chinese). doi: 10.3969/j.issn.1002-0268.2004.08.028
    [19] 王殿海, 金盛. 车辆跟驰行为建模的回顾与展望[J]. 中国公路学报, 2012, 25 (1): 115-127. doi: 10.3969/j.issn.1001-7372.2012.01.018

    WANG Dian-hai, JIN Sheng. Review and outlook of modeling of car following behavior[J]. China Journal of Highway and Transport, 2012, 25 (1): 115-127. (in Chinese). doi: 10.3969/j.issn.1001-7372.2012.01.018
    [20] 陈涛, 陈燕芹, 邓刚, 等. 驾驶人行为模型的研究综述[J]. 长安大学学报: 自然科学版, 2016, 36 (2): 80-90. doi: 10.3969/j.issn.1671-8879.2016.02.011

    CHEN Tao, CHEN Yan-qin, DENG Gang, et al. Review of driver behavior models[J]. Journal of Chang'an University: Natural Science Edition, 2016, 36 (2): 80-90. (in Chinese). doi: 10.3969/j.issn.1671-8879.2016.02.011
    [21] MARSDEN G, MCDONALD M, BRACKSTONE M. Towards an understanding of adaptive cruise control[J]. Transportation Research Part C: Emerging Technologies, 2001, 9 (1): 33-51. doi: 10.1016/S0968-090X(00)00022-X
    [22] SHLADOVER S E, SU Dong-yan, LU Xiao-yun. Impacts of cooperative adaptive cruise control on freeway traffic flow[J]. Transportation Research Record, 2012 (2324): 63-70.
    [23] TREIBER M, HENNECKE A, HELBING D. Congested traffic states in empirical observations and microscopic simulations[J]. Physical Review E, 2000, 62 (2): 1805-1824. doi: 10.1103/PhysRevE.62.1805
    [24] KESTING A, TREIBER M, HELBING D. Enhanced intelligent driver model to access the impact of driving strategies on traffic capacity[J]. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2010, 368 (1928): 4585-4605. doi: 10.1098/rsta.2010.0084
    [25] LI Zhi-peng, LI Wen-zhong, XU Shang-zhi, et al. Stability analysis of an extended intelligent driver model and its simulations under open boundary condition[J]. Physica A: Statistical Mechanics and its Applications, 2015, 419: 526-536. doi: 10.1016/j.physa.2014.10.063
    [26] KESTING A, TREIBER M, SCHONHOF M, et al. Extending adaptive cruise control to adaptive driving strategies[J]. Transportation Research Record, 2007 (2000): 16-24.
    [27] MILANES V, SHLADOVRE S E. Modeling cooperative and autonomous adaptive cruise control dynamic responses using experimental data[J]. Transportation Research Part C: Emerging Technologies, 2014, 48: 285-300. doi: 10.1016/j.trc.2014.09.001
    [28] VANDERWERF J, SHLADOVRE S, KOURJANSKAIA N, et al. Modeling effects of driver control assistance systems on traffic[J]. Transportation Research Record, 2001 (1748): 167-174.
    [29] SHLADOVRE S E, TAN S K. Analysis of vehicle positioning accuracy requirements for communication-based cooperative collision warning[J]. Journal of Intelligent Transportation Systems, 2007, 10 (3): 131-140.
    [30] SHLADOVRE S E, DESOER C A, HEDRICK J K, et al. Automated vehicle control developments in the PATH program[J]. IEEE Transactions on Vehicular Technology, 1991, 40 (1): 114-130. doi: 10.1109/25.69979
    [31] NUS G J L, PLOEG J, MOLENGRAFT M J G V D, et al. Design and implementation of parameterized adaptive cruise control: an explicit model predictive control approach[J]. Control Engineering Practice, 2010, 18 (8): 882-892. doi: 10.1016/j.conengprac.2010.03.012
    [32] NARANJO J E, GONZALEZ C, GARCIA R, et al. ACC+stop and go maneuvers with throttle and brake fuzzy control[J]. IEEE Transactions on Intelligent Transportation Systems, 2006, 7 (2): 213-225. doi: 10.1109/TITS.2006.874723
    [33] GEIGER A, LAUER M, MOOSMANN F, et al. Team annieway's entry to the 2011grand cooperative driving challenge[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13 (3): 1008-1017. doi: 10.1109/TITS.2012.2189882
    [34] MILANES V, SHLADOVER S E, SPRING J, et al. Cooperative adaptive cruise control in real traffic situations[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15 (1): 296-305. doi: 10.1109/TITS.2013.2278494
    [35] NAUS G J L, VUGTS R P A, PLOEG J, et al. Stringstable CACC design and experimental validation: a frequencydomain approach[J]. IEEE Transactions on Vehicular Technology, 2010, 59 (9): 4268-4279. doi: 10.1109/TVT.2010.2076320
    [36] KIANFAR R, AUGUSTO B, EBADIGHAJARI A, et al. Design and experimental validation of a cooperative driving system in the grand cooperative driving challenge[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13 (3): 994-1007. doi: 10.1109/TITS.2012.2186513
    [37] KESTING A, TREIBER M, SCHONHOF M, et al. Adaptive cruise control design for active congestion avoidance[J]. Transportation Research Part C: Emerging Technologies, 2008, 16 (6): 668-683. doi: 10.1016/j.trc.2007.12.004
    [38] NTOUSAKIS I A, NIKOLOS I K, PAPAGEORGIOU M. On microscopic modeling of adaptive cruise control systems[J]. Transportation Research Procedia, 2015, 6: 111-127. doi: 10.1016/j.trpro.2015.03.010
    [39] VANDERWERF J, SHLADOVER S E, MILLER M A, et al. Effects of adaptive cruise control systems on highway traffic flow capacity[J]. Transportation Research Record, 2002 (1800): 78-84.
    [40] VAN AREM B, VAN DRIEL C J G, VISSER R. The impact of cooperative adaptive cruise control on traffic-flow characteristics[J]. IEEE Transactions on Intelligent Transportation Systems, 2006, 7 (4): 429-436. doi: 10.1109/TITS.2006.884615
    [41] ZOHDY I H, RAKHA H A. Enhancing roundabout operations via vehicle connectivity[J]. Transportation Research Record, 2013 (2381): 91-100.
    [42] LU Xiao-yun, SHLADOVER S E, JAWAD I, et al. A novel speed-measurement based variable speed limit/advisory algorithm for a freeway corridor with multiple bottlenecks[C]∥TRB. 94th TRB Annual Conference. Washington DC: TRB, 2015: 1-16.
    [43] LEE J D, MCGEHEE D V, BROWN T L, et al. Effects of adaptive cruise control and alert modality on driver performance[J]. Transportation Research Record, 2006 (1980): 49-56.
    [44] WANG J, RAJAMANI R. The impact of adaptive cruise control systems on highway safety and traffic flow[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2004, 218 (2): 111-130. doi: 10.1243/095440704772913918
    [45] MOON S, MOON I, YI K. Design, tuning, and evaluation of a full-range adaptive cruise control system with collision avoidance[J]. Control Engineering Practice, 2009, 17 (4): 442-455. doi: 10.1016/j.conengprac.2008.09.006
    [46] FARAH H, KOUTSOPOULOS H N. Do cooperative systems make drivers'car-following behavior safer?[J]. Transportation Research Part C: Emerging Technologies, 2014, 41: 61-72. doi: 10.1016/j.trc.2014.01.015
    [47] MILANES V, SHLADOVER S E. Handling cut-in vehicles in strings of cooperative adaptive cruise control vehicles[J]. Journal of Intelligent Transportation Systems, 2016, 20 (2): 178-191. doi: 10.1080/15472450.2015.1016023
    [48] NIEUWENHUIJZE M R I, KEULEN T V, ONCU S, et al. Cooperative driving with a heavy-duty truck in mixed traffic: Experimental results[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13 (3): 1026-1032. doi: 10.1109/TITS.2012.2202230
    [49] GE J I, OROSZ G. Dynamics of connected vehicle systems with delayed acceleration feedback[J]. Transportation Research Part C: Emerging Technologies, 2014, 46: 46-64. doi: 10.1016/j.trc.2014.04.014
    [50] SCHAKEL W J, KNOOP V L, AREM B V. Integrated lane change model with relaxation and synchronization[J]. Transportation Research Record, 2012 (2316): 47-57.
    [51] WANG Meng, DAAMEN W, HOOGENDOORN S P, et al. Cooperative car-following control: distributed algorithm and impact on moving jam features[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17 (5): 1459-1471. doi: 10.1109/TITS.2015.2505674
    [52] SAU J, MONTEIL J, BILLOT R, et al. The root locus method: application to linear stability analysis and design of cooperative car-following models[J]. Transportmetrica B: Transport Dynamics, 2014, 2 (1): 60-82. doi: 10.1080/21680566.2014.893416
    [53] HOLLAND E N. A generalised stability criterion for motorway traffic[J]. Transportation Research Part B: Methodological, 1998, 32 (2): 141-154. doi: 10.1016/S0191-2615(97)00021-0
    [54] WARD J A. Heterogeneity, lane-changing and instability in traffic: a mathematical approach[D]. Bristol: University of Bristol, 2009.
    [55] TALEBPOUR A, MAHMASSANI H S. Influence of connected and autonomous vehicles on traffic flow stability and throughput[J]. Transportation Research Part C: Emerging Technologies, 2016, 71: 143-163.
    [56] PUEBOOBPAPHAN R, AREM B V. Driver and vehicle characteristics and platoon and traffic flow stability: understanding the relationship for design and assessment of cooperative adaptive cruise control[J]. Transportation Research Record, 2010 (2189): 89-97.
    [57] LEE J, PARK B. Development and evaluation of a cooperative vehicle intersection control algorithm under the connected vehicles environment[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13 (1): 81-90.
  • 加载中
图(2) / 表(5)
计量
  • 文章访问数:  2303
  • HTML全文浏览量:  2307
  • PDF下载量:  2049
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-23
  • 刊出日期:  2017-06-25

目录

    /

    返回文章
    返回