-
摘要: 分析了自动驾驶汽车自适应巡航控制(Adaptive Cruise Control, ACC) 和协同自适应巡航控制(Cooperative Adaptive Cruise Control, CACC) 车辆跟驰模型, 从系统控制原理、车车通信技术与车间时距方面阐述了ACC与CACC车辆的异同点; 将目前主流ACC/CACC车辆跟驰模型分为3类: 基于智能驾驶的车辆跟驰模型、加州伯克利大学PATH实验室车辆跟驰模型与基于控制论的车辆跟驰模型, 总结3类车辆跟驰模型的建模思路与主要优缺点; 从道路通行能力、交通安全和交通流稳定性3方面, 分析了ACC/CACC车辆对交通流特性的影响, 及其研究现状与未来发展趋势。研究结果表明: 不同的ACC/CACC车辆跟驰模型对通行能力的影响存在较大差别, ACC/CACC车辆有利于提升交通安全性, 但由于缺乏统一的安全性评价指标, 难以量化ACC/CACC车辆对交通安全性的影响程度; 小规模实车试验验证了ACC车辆具有不稳定的交通流特性, 否定了ACC车辆稳定性数值仿真结果, 而数值仿真试验和小规模实车试验均表明CACC车辆可较好提升交通流稳定性, 因此, 完全依赖于计算机仿真试验无法获得令人信服的结论, 实车试验是ACC/CACC研究的必要途径; 为了完善ACC/CACC在交通领域的研究, 应构建不同ACC/CACC车辆比例下的混合交通流基本图模型、智能网联环境下的ACC/CACC车辆跟驰模型建模方法与ACC/CACC混合交通流稳定性解析方法。Abstract: The car-following models of adaptive cruise control (ACC) and cooperative adaptive cruise control (CACC) of autonomous vehicles were analyzed. From the aspects of system control principle, vehicle-to-vehicle communication technology and vehicle time-gap, the similarities and differences of ACC and CACC vehicles were expounded. The mainstream car-following models ofACC/CACC vehicles at present were divided into 3 categories: the car-following model based on intelligent drive, the car-following model of PATH laboratory of University of California, Berkeley, and the car-following model based on control theory. The modeling ideas of the 3 categories of car-following models were summarized, and their merits and drawbacks were also expounded. Representative achievements about the impacts of ACC/CACC vehicles on traffic flow characteristics were reviewed from 3 aspects of road capacity, traffic safety, and traffic flow stability. Then, the research status of this field was formed. Meanwhile, the future development trend was pointed out. Research result shows that the impacts of different ACC/CACC carfollowing models on road capacity have relatively big difference. ACC/CACC vehicles are helpful to improve traffic safety. However, because the uniform index of safety evaluation is absent, it is difficult to quantitatively evaluate the impacts of ACC/CACC vehicles on traffic safety. Small scale real vehicle tests validate that ACC vehicles have unstable traffic flow characteristics. The tests reject the numerical simulation-based results of ACC vehicles stability. But both numerical simulations and small scale real vehicle tests show that CACC vehicles can improve traffic flow stability well. Therefore, convincing conclusions are unable to be obtained based on computer simulations absolutely. Real vehicle tests are the necessary way of ACC/CACC research. In order to perfect the research of ACC/CACC in this field, the fundamental diagram models of mixed traffic flow with different proportions of ACC/CACC vehicles, the modeling methods for ACC/CACC car-following models in the intelligent and connected environment and the stability analysis methods for ACC/CACC mixed traffic flow should be built.
-
表 1 驾驶人接受比例
Table 1. Acceptance proportions of drivers
表 2 基于IDM的ACC车辆跟驰模型参数取值
Table 2. Parameter values of ACC car-following models based on IDM
表 3 PATH实验室车辆跟驰模型
Table 3. Car-following models of PATH laboratory
表 4 基于控制论的车辆跟驰模型
Table 4. Car-following models based on control theory
表 5 ACC车辆对通行能力的影响
Table 5. Impacts of ACC vehicles on capacity
-
[1] KERNER B S. Experimental features of self-organization in traffic flow[J]. Physical Review Letters, 1998, 81 (17): 3797-3800. doi: 10.1103/PhysRevLett.81.3797 [2] MAHMASSANI H S. Autonomous vehicles and connected vehicle systems: flow and operations considerations[J]. Transportation Science, 2016, 50 (4): 1140-1162. doi: 10.1287/trsc.2016.0712 [3] NUNEN E V, KWAKKERNAAT M R J A E, PLOEG J, et al. Cooperative competition for future mobility[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13 (3): 1018-1025. doi: 10.1109/TITS.2012.2200475 [4] DEY K C, YAN Li, WANG Xu-jie, et al. A review of communication, driver characteristics, and controls aspects of cooperative adaptive cruise control[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17 (2): 491-509. doi: 10.1109/TITS.2015.2483063 [5] RAJAMANI R, SHLADOVER S E. An experimental comparative study of autonomous and co-operative vehiclefollower control systems[J]. Transportation Research Part C: Emerging Technologies, 2001, 9 (1): 15-31. doi: 10.1016/S0968-090X(00)00021-8 [6] VINE S L, LIU Xiao-bo, ZHENG Fang-fang, et al. Automated cars: queue discharge at signalized intersections with'assured-clear-distance-ahead'driving strategies[J]. Transportation Research Part C: Emerging Technologies, 2016, 62: 35-54. doi: 10.1016/j.trc.2015.11.005 [7] VOLLRATH M, SCHLEICHER S, GELAU C. The influence of cruise control and adaptive cruise control on driving behavior—a driving simulator study[J]. Accident Analysis and Prevention, 2011, 43 (3): 1134-1139. doi: 10.1016/j.aap.2010.12.023 [8] YU Shao-wei, SHI Zhong-ke. The effects of vehicular gap changes with memory on traffic flow in cooperative adaptive cruise control strategy[J]. Physica A: Statistical Mechanics and its Applications, 2015, 428: 206-223. doi: 10.1016/j.physa.2015.01.064 [9] CHEN Dan-jue, AHN S, CHITTURI M, et al. Towards vehicle automation: roadway capacity formulation for traffic mixed with regular and automated vehicles[J]. Transportation Research Part B: Methodological, 2017, 100: 196-221. doi: 10.1016/j.trb.2017.01.017 [10] JIA Dong-yao, NGODUY D. Enhanced cooperative carfollowing traffic model with the combination of V2Vand V2I communication[J]. Transportation Research Part B: Methodological, 2016, 90: 172-191. doi: 10.1016/j.trb.2016.03.008 [11] 张德兆, 王建强, 刘佳熙, 等. 加速度连续型自适应巡航控制模式切换策略[J]. 清华大学学报: 自然科学版, 2010, 50 (8): 1277-1281. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201008034.htmZHANG De-zhao, WANG Jian-qiang, LIU Jia-xi, et al. Switching strategy for adaptive cruise control modes for continuous acceleration[J]. Journal of Tsinghua University: Science and Technology, 2010, 50 (8): 1277-1281. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201008034.htm [12] 华雪东, 王炜, 王昊. 考虑车与车互联通讯技术的交通流跟驰模型[J]. 物理学报, 2016, 65 (1): 52-63. doi: 10.3969/j.issn.1672-7940.2016.01.009HUA Xue-dong, WANG Wei, WANG Hao. Traffic carfollowing model based on car communication technology[J]. Acta Physica Sinica, 2016, 65 (1): 52-63. (in Chinese). doi: 10.3969/j.issn.1672-7940.2016.01.009 [13] 王灿, 马钧. 汽车CACC系统的车头时距策略研究[J]. 农业装备与车辆工程, 2015, 53 (2): 60-67. doi: 10.3969/j.issn.1673-3142.2015.02.013WANG Can, MA Jun. Study on automotive CACC systems headway policy[J]. Agricultural Equipment and Vehicle Engineering, 2015, 53 (2): 60-67. (in Chinese). doi: 10.3969/j.issn.1673-3142.2015.02.013 [14] 王昊, 刘振全, 张志学, 等. 考虑双前导车的跟驰与换道联合模型[J]. 东南大学学报: 自然科学版, 2015, 45 (5): 985-989. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201505029.htmWANG Hao, LIU Zhen-quan, ZHANG Zhi-xue, et al. Doubel-head car-following and lane-changing combined model[J]. Journal of Southeast University: Natural Science Edition, 2015, 45 (5): 985-989. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201505029.htm [15] 金峻臣. 基于ACC系统的跟驰模型改进分析[J]. 科学技术与工程, 2011, 11 (26): 6396-6400. doi: 10.3969/j.issn.1671-1815.2011.26.031JIN Jun-chen. Research on improved car-following based on ACC system[J]. Science Technology and Engineering, 2011, 11 (26): 6396-6400. (in Chinese). doi: 10.3969/j.issn.1671-1815.2011.26.031 [16] 罗莉华. 汽车自适应巡航控制及相应宏观交通流模型研究[D]. 杭州: 浙江大学, 2011.LUO Li-hua. Vehicle adaptive cruise control and the corresponding macroscopic traffic flow model[D]. Hangzhou: Zhejiang University, 2011. (in Chinese). [17] XIAO Ling-yun, GAO Feng. A comprehensive review of the development of adaptive cruise control systems[J]. Vehicle System Dynamics, 2010, 48 (10): 1167-1192. doi: 10.1080/00423110903365910 [18] 张智勇, 荣建, 任福田. 跟车模型研究综述[J]. 公路交通科技, 2004, 21 (8): 108-113. doi: 10.3969/j.issn.1002-0268.2004.08.028ZHANG Zhi-yong, RONG Jian, REN Fu-tian. Review of car following model research[J]. Journal of Highway and Transportation Research and Development, 2004, 21 (8): 108-113. (in Chinese). doi: 10.3969/j.issn.1002-0268.2004.08.028 [19] 王殿海, 金盛. 车辆跟驰行为建模的回顾与展望[J]. 中国公路学报, 2012, 25 (1): 115-127. doi: 10.3969/j.issn.1001-7372.2012.01.018WANG Dian-hai, JIN Sheng. Review and outlook of modeling of car following behavior[J]. China Journal of Highway and Transport, 2012, 25 (1): 115-127. (in Chinese). doi: 10.3969/j.issn.1001-7372.2012.01.018 [20] 陈涛, 陈燕芹, 邓刚, 等. 驾驶人行为模型的研究综述[J]. 长安大学学报: 自然科学版, 2016, 36 (2): 80-90. doi: 10.3969/j.issn.1671-8879.2016.02.011CHEN Tao, CHEN Yan-qin, DENG Gang, et al. Review of driver behavior models[J]. Journal of Chang'an University: Natural Science Edition, 2016, 36 (2): 80-90. (in Chinese). doi: 10.3969/j.issn.1671-8879.2016.02.011 [21] MARSDEN G, MCDONALD M, BRACKSTONE M. Towards an understanding of adaptive cruise control[J]. Transportation Research Part C: Emerging Technologies, 2001, 9 (1): 33-51. doi: 10.1016/S0968-090X(00)00022-X [22] SHLADOVER S E, SU Dong-yan, LU Xiao-yun. Impacts of cooperative adaptive cruise control on freeway traffic flow[J]. Transportation Research Record, 2012 (2324): 63-70. [23] TREIBER M, HENNECKE A, HELBING D. Congested traffic states in empirical observations and microscopic simulations[J]. Physical Review E, 2000, 62 (2): 1805-1824. doi: 10.1103/PhysRevE.62.1805 [24] KESTING A, TREIBER M, HELBING D. Enhanced intelligent driver model to access the impact of driving strategies on traffic capacity[J]. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2010, 368 (1928): 4585-4605. doi: 10.1098/rsta.2010.0084 [25] LI Zhi-peng, LI Wen-zhong, XU Shang-zhi, et al. Stability analysis of an extended intelligent driver model and its simulations under open boundary condition[J]. Physica A: Statistical Mechanics and its Applications, 2015, 419: 526-536. doi: 10.1016/j.physa.2014.10.063 [26] KESTING A, TREIBER M, SCHONHOF M, et al. Extending adaptive cruise control to adaptive driving strategies[J]. Transportation Research Record, 2007 (2000): 16-24. [27] MILANES V, SHLADOVRE S E. Modeling cooperative and autonomous adaptive cruise control dynamic responses using experimental data[J]. Transportation Research Part C: Emerging Technologies, 2014, 48: 285-300. doi: 10.1016/j.trc.2014.09.001 [28] VANDERWERF J, SHLADOVRE S, KOURJANSKAIA N, et al. Modeling effects of driver control assistance systems on traffic[J]. Transportation Research Record, 2001 (1748): 167-174. [29] SHLADOVRE S E, TAN S K. Analysis of vehicle positioning accuracy requirements for communication-based cooperative collision warning[J]. Journal of Intelligent Transportation Systems, 2007, 10 (3): 131-140. [30] SHLADOVRE S E, DESOER C A, HEDRICK J K, et al. Automated vehicle control developments in the PATH program[J]. IEEE Transactions on Vehicular Technology, 1991, 40 (1): 114-130. doi: 10.1109/25.69979 [31] NUS G J L, PLOEG J, MOLENGRAFT M J G V D, et al. Design and implementation of parameterized adaptive cruise control: an explicit model predictive control approach[J]. Control Engineering Practice, 2010, 18 (8): 882-892. doi: 10.1016/j.conengprac.2010.03.012 [32] NARANJO J E, GONZALEZ C, GARCIA R, et al. ACC+stop and go maneuvers with throttle and brake fuzzy control[J]. IEEE Transactions on Intelligent Transportation Systems, 2006, 7 (2): 213-225. doi: 10.1109/TITS.2006.874723 [33] GEIGER A, LAUER M, MOOSMANN F, et al. Team annieway's entry to the 2011grand cooperative driving challenge[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13 (3): 1008-1017. doi: 10.1109/TITS.2012.2189882 [34] MILANES V, SHLADOVER S E, SPRING J, et al. Cooperative adaptive cruise control in real traffic situations[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15 (1): 296-305. doi: 10.1109/TITS.2013.2278494 [35] NAUS G J L, VUGTS R P A, PLOEG J, et al. Stringstable CACC design and experimental validation: a frequencydomain approach[J]. IEEE Transactions on Vehicular Technology, 2010, 59 (9): 4268-4279. doi: 10.1109/TVT.2010.2076320 [36] KIANFAR R, AUGUSTO B, EBADIGHAJARI A, et al. Design and experimental validation of a cooperative driving system in the grand cooperative driving challenge[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13 (3): 994-1007. doi: 10.1109/TITS.2012.2186513 [37] KESTING A, TREIBER M, SCHONHOF M, et al. Adaptive cruise control design for active congestion avoidance[J]. Transportation Research Part C: Emerging Technologies, 2008, 16 (6): 668-683. doi: 10.1016/j.trc.2007.12.004 [38] NTOUSAKIS I A, NIKOLOS I K, PAPAGEORGIOU M. On microscopic modeling of adaptive cruise control systems[J]. Transportation Research Procedia, 2015, 6: 111-127. doi: 10.1016/j.trpro.2015.03.010 [39] VANDERWERF J, SHLADOVER S E, MILLER M A, et al. Effects of adaptive cruise control systems on highway traffic flow capacity[J]. Transportation Research Record, 2002 (1800): 78-84. [40] VAN AREM B, VAN DRIEL C J G, VISSER R. The impact of cooperative adaptive cruise control on traffic-flow characteristics[J]. IEEE Transactions on Intelligent Transportation Systems, 2006, 7 (4): 429-436. doi: 10.1109/TITS.2006.884615 [41] ZOHDY I H, RAKHA H A. Enhancing roundabout operations via vehicle connectivity[J]. Transportation Research Record, 2013 (2381): 91-100. [42] LU Xiao-yun, SHLADOVER S E, JAWAD I, et al. A novel speed-measurement based variable speed limit/advisory algorithm for a freeway corridor with multiple bottlenecks[C]∥TRB. 94th TRB Annual Conference. Washington DC: TRB, 2015: 1-16. [43] LEE J D, MCGEHEE D V, BROWN T L, et al. Effects of adaptive cruise control and alert modality on driver performance[J]. Transportation Research Record, 2006 (1980): 49-56. [44] WANG J, RAJAMANI R. The impact of adaptive cruise control systems on highway safety and traffic flow[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2004, 218 (2): 111-130. doi: 10.1243/095440704772913918 [45] MOON S, MOON I, YI K. Design, tuning, and evaluation of a full-range adaptive cruise control system with collision avoidance[J]. Control Engineering Practice, 2009, 17 (4): 442-455. doi: 10.1016/j.conengprac.2008.09.006 [46] FARAH H, KOUTSOPOULOS H N. Do cooperative systems make drivers'car-following behavior safer?[J]. Transportation Research Part C: Emerging Technologies, 2014, 41: 61-72. doi: 10.1016/j.trc.2014.01.015 [47] MILANES V, SHLADOVER S E. Handling cut-in vehicles in strings of cooperative adaptive cruise control vehicles[J]. Journal of Intelligent Transportation Systems, 2016, 20 (2): 178-191. doi: 10.1080/15472450.2015.1016023 [48] NIEUWENHUIJZE M R I, KEULEN T V, ONCU S, et al. Cooperative driving with a heavy-duty truck in mixed traffic: Experimental results[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13 (3): 1026-1032. doi: 10.1109/TITS.2012.2202230 [49] GE J I, OROSZ G. Dynamics of connected vehicle systems with delayed acceleration feedback[J]. Transportation Research Part C: Emerging Technologies, 2014, 46: 46-64. doi: 10.1016/j.trc.2014.04.014 [50] SCHAKEL W J, KNOOP V L, AREM B V. Integrated lane change model with relaxation and synchronization[J]. Transportation Research Record, 2012 (2316): 47-57. [51] WANG Meng, DAAMEN W, HOOGENDOORN S P, et al. Cooperative car-following control: distributed algorithm and impact on moving jam features[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17 (5): 1459-1471. doi: 10.1109/TITS.2015.2505674 [52] SAU J, MONTEIL J, BILLOT R, et al. The root locus method: application to linear stability analysis and design of cooperative car-following models[J]. Transportmetrica B: Transport Dynamics, 2014, 2 (1): 60-82. doi: 10.1080/21680566.2014.893416 [53] HOLLAND E N. A generalised stability criterion for motorway traffic[J]. Transportation Research Part B: Methodological, 1998, 32 (2): 141-154. doi: 10.1016/S0191-2615(97)00021-0 [54] WARD J A. Heterogeneity, lane-changing and instability in traffic: a mathematical approach[D]. Bristol: University of Bristol, 2009. [55] TALEBPOUR A, MAHMASSANI H S. Influence of connected and autonomous vehicles on traffic flow stability and throughput[J]. Transportation Research Part C: Emerging Technologies, 2016, 71: 143-163. [56] PUEBOOBPAPHAN R, AREM B V. Driver and vehicle characteristics and platoon and traffic flow stability: understanding the relationship for design and assessment of cooperative adaptive cruise control[J]. Transportation Research Record, 2010 (2189): 89-97. [57] LEE J, PARK B. Development and evaluation of a cooperative vehicle intersection control algorithm under the connected vehicles environment[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13 (1): 81-90.