-
摘要: 针对轨道车辆普遍存在的车轮多边形问题, 从轨道车辆的稳定性、曲线通过能力、平稳性三方面阐述车轮多边形对轨道车辆动力学性能的影响, 从疲劳寿命角度评价车轮多边形对车辆-轨道系统零部件的影响; 基于轮轴和轨道结构特性、轮轨间动力作用、车轮材料及加工工艺方面研究, 对车轮多边形形成机理进行了归类; 归纳了车轮多边形产生的影响及其成因, 概括了现有车轮多边形检测与控制方法; 提出了车轮多边形研究展望, 为后续车轮多边形问题研究提供参考。研究结果表明: 车轮多边形会威胁到车辆系统稳定性, 降低车辆的曲线通过性能及车辆平稳性, 影响了旅客乘坐舒适性, 并对车辆-轨道零部件产生共振疲劳损伤; 轮轴共振是引起低速车辆车轮多边形的原因之一, 钢轨在外部激励下的响应以及局部模态与车轮多边形的形成也有必然联系, 轮轨摩擦振动则普遍适用于解释所有轨道车辆车轮多边形的产生, 车轮自身材质特性及制造镟修工艺也是车轮多边形现象发生的潜在因素; 动静态检测是处理车轮多边形现象的方法之一, 另外就是通过优化车辆-轨道系统结构、加强车轮生产工艺、对车轮踏面圆度及时修正等措施实现对车轮多边形现象的控制; 目前, 镟修仍是车轮多边形最直接处理手段, 应当改善镟修工艺。Abstract: Aiming at the problem of wheel polygons common to rail vehicles, the effects of wheel polygons on the dynamics performance of rail vehicles were described from the aspects of rail vehicle stability, curve passing ability, and stability, and the impact of wheel polygons on the vehicle-track system components was evaluated from the perspective of fatigue life.The formation mechanism of wheel polygon was classified based on the research of wheel-axle and track structural characteristics, wheel-rail dynamic effect, wheel materials and processing technology. The existing methods of wheel polygon detection and control were summarized by summarizing the influence of wheel polygons and their causes. The research prospects of wheel polygons were proposed to provide a reference for the subsequent research on wheel polygons. Research result shows that the wheel polygon will threaten the stability of vehicle system, reduce the curve passing performance and vehicle stability, affect the passengers' comfort, and cause resonance fatigue damage to vehicle-track components. The wheel-axle resonance is one of the causes of low-speed vehicle wheel polygons. The response of rails under the external excitation and local modes are also necessarily related to the formation of wheel polygons. The wheel-rail friction vibration is generally applicable to explain the generation of wheel polygons for all rail vehicles. The wheel's own material characteristics and manufacturing repair process are also potential factors to reduce the wheel polygon phenomenon. Dynamic and static detections are one of the methods to deal with the wheel polygon phenomenon. In addition, the wheel polygon phenomenon can be controlled by optimizing the structure of vehicle-track system, strengthening the wheel production process, and timely correcting the roundness of wheel tread. Wheel repair is still the most direct means to deal with the wheel polygon, and the repair process should be improved.
-
Key words:
- vehicle engineering /
- high-speed train /
- wheel polygon /
- dynamics /
- influence /
- mechanism
-
表 1 车轮多边形的研究方法及形成机理
Table 1. Research methods and formation mechanisms of wheel polygon
-
[1] 张新, 李向国, 王海云, 等. 轨距不平顺激励下高速列车动力响应研究[J]. 石家庄铁道大学学报(自然科学版), 2011, 24(1): 69-72, 77. doi: 10.3969/j.issn.2095-0373.2011.01.016ZHANG Xin, LI Xiang-guo, WANG Hai-yun, et al. Study on dynamic response of high speed train excited by irregularity of rail gauge[J]. Journal of Shijiazhuang Tiedao University (Natural Science), 2011, 24(1): 69-72, 77. (in Chinese). doi: 10.3969/j.issn.2095-0373.2011.01.016 [2] 王忆佳. 车轮踏面伤损对高速列车动力学行为的影响[D]. 成都: 西南交通大学, 2014.WANG Yi-jia. Effect of wheel tread damage on dynamic behaviour of high speed trains[D]. Chengdu: Southwest Jiaotong University, 2014. (in Chinese). [3] KAPER H P. Wheel corrugation on Netherlands railways (NS): origin and effects of "polygonization" in particular[J]. Journal of Sound and Vibration, 1988, 120(2): 267-274. doi: 10.1016/0022-460X(88)90434-8 [4] 金学松, 吴越, 梁树林, 等. 车轮非圆化磨耗问题研究进展[J]. 西南交通大学学报, 2018, 53(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201801001.htmJIN Xue-song, WU Yue, LIANG Shu-lin, et al. Mechanisms and countermeasures of out-of-roundness wear on railway vehicle wheels[J]. Journal of Southwest Jiaotong University, 2018, 53(1): 1-14. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201801001.htm [5] 金天贺, 刘志明, 任尊松, 等. 高速列车减振器组合阻尼特性效应研究[J]. 华南理工大学学报(自然科学版), 2018, 46(9): 116-124. https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG201809017.htmJIN Tian-he, LIU Zhi-ming, REN Zun-song, et al. Study of combination damping characteristics effect of high-speed train damper[J]. Journal of South China University of Technology (Natural Science Edition), 2018, 46(9): 116-124. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG201809017.htm [6] 李艳, 张卫华, 池茂儒, 等. 车轮踏面外形及轮径差对车辆动力学性能的影响[J]. 铁道学报, 2010, 32(1): 104-108. doi: 10.3969/j.issn.1001-8360.2010.01.018LI Yan, ZHANG Wei-hua, CHI Mao-ru, et al. Influence of wheel tread profile and rolling diameter difference on dynamic performance of vehicles[J]. Journal of the China Railway Society, 2010, 32(1): 104-108. (in Chinese). doi: 10.3969/j.issn.1001-8360.2010.01.018 [7] 黄照伟, 崔大宾, 杜星, 等. 车轮偏磨对高速列车直线运行性能的影响[J]. 铁道学报, 2013, 35(2): 14-20. doi: 10.3969/j.issn.1001-8360.2013.02.003HUANG Zhao-wei, CUI Da-bin, DU Xing, et al. Influence of deviated wear of wheel on performance of high-speed train running on straight tracks[J]. Journal of the China Railway Society, 2013, 35(2): 14-20. (in Chinese). doi: 10.3969/j.issn.1001-8360.2013.02.003 [8] 袁雨青. 高速列车车轮不圆机理及影响研究[D]. 北京: 北京交通大学, 2016.YUAN Yu-qing. Study on the mechanism and influence of the wheel out-of-round of high speed train[D]. Beijing: Beijing Jiaotong University, 2016. (in Chinese). [9] 宋颖. 高速车轮失圆对轮轨动力作用的影响及其监测方法研究[D]. 北京: 北京交通大学, 2010.SONG Ying. Study on influence of out-of-round high-speed railway wheels on wheel/rail interaction force and monitoring method[D]. Beijing: Beijing Jiaotong University, 2010. (in Chinese). [10] 张雪珊, 肖新标, 金学松. 高速车轮椭圆化问题及其对车辆横向稳定性的影响[J]. 机械工程学报, 2008, 44(3): 50-56. doi: 10.3321/j.issn:0577-6686.2008.03.009ZHANG Xue-shan, XIAO Xin-biao, JIN Xue-song. Influence of high speed railway wheels ovalization on vehicle lateral stability[J]. Chinese Journal of Mechanical Engineering, 2008, 44(3): 50-56. (in Chinese). doi: 10.3321/j.issn:0577-6686.2008.03.009 [11] 张雪珊, 肖新标, 金学松. 高速车轮椭圆化对车辆系统行为的影响[J]. 机械工程学报, 2010, 46(16): 67-73. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201016013.htmZHANG Xue-shan, XIAO Xin-biao, JIN Xue-song. Effect of ovalization of high speed railway wheels on vehicle dynamic performance[J]. Journal of Mechanical Engineering, 2010, 46(16): 67-73. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201016013.htm [12] 邓永果. 车轮非圆化对高速车辆系统动力学性能旳影响[D]. 成都: 西南交通大学, 2014.DENG Yong-guo. Effect of out-of-round wheel on vehicle system dynamics behavior[D]. Chengdu: Southwest Jiaotong University, 2014. (in Chinese). [13] 王志臣, 宋颖, 杜彦良. 基于仿真的铁路车轮不圆度安全限值研究[J]. 石家庄铁道大学学报(自然科学版), 2014, 27(2): 61-65. https://www.cnki.com.cn/Article/CJFDTOTAL-SJZT201402013.htmWANG Zhi-chen, SONG Ying, DU Yan-liang. Safety management of out-of-round wheel profiles of high-speed railway based on ADAMS/rail simulation[J]. Journal of Shijiazhuang Tiedao University (Natural Science), 2014, 27(2): 61-65. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SJZT201402013.htm [14] 刘韦. 轮对纵向振动及其对车轮踏面磨耗的影响研究[D]. 成都: 西南交通大学, 2016.LIU Wei. The study of wheelset longitudinal vibration and its influences on wheel tread wear[D]. Chengdu: Southwest Jiaotong University, 2016. (in Chinese). [15] 刘韦, 马卫华, 罗世辉, 等. 考虑轮对弹性的车轮振动及车轮多边形对轮轨力影响研究[J]. 铁道学报, 2013, 35(6): 28-34. doi: 10.3969/j.issn.1001-8360.2013.06.005LIU Wei, MA Wei-hua, LUO Shi-hui, et al. Research on influence of wheel vibration and wheel polygonization on wheel-rail force in consideration of wheelset elasticity[J]. Journal of the China Railway Society, 2013, 35(6): 28-34. (in Chinese). doi: 10.3969/j.issn.1001-8360.2013.06.005 [16] 崔大宾, 梁树林, 宋春元, 等. 高速车轮非圆化现象及其对轮轨行为的影响[J]. 机械工程学报, 2013, 49(18): 8-16. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201318002.htmCUI Da-bin, LIANG Shu-lin, SONG Chun-yuan, et al. Out of round high-speed wheel and its influence on wheel/rail behavior[J]. Journal of Mechanical Engineering, 2013, 49(18): 8-16. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201318002.htm [17] 王平, 张荣鹤, 陈嘉胤, 等. 高速铁路列车车轮多边形化对道岔区动力学性能的影响[J]. 机械工程学报, 2018, 54(4): 47-56. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201804008.htmWANG Ping, ZHANG Rong-he, CHEN Jia-yin, et al. Influence of polygonal wheels in high-speed trains on dynamic performance of turnout[J]. Journal of Mechanical Engineering, 2018, 54(4): 47-56. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201804008.htm [18] 李贵宇. 基于轨道振动的车轮多边形机理研究[D]. 成都: 西南交通大学, 2016.LI Gui-yu. Study on the form reason of wheel polygonization based on track vibration[D]. Chengdu: Southwest Jiaotong University, 2016. (in Chinese). [19] 吴磊, 钟硕乔, 金学松, 等. 车轮多边形化对车辆运行安全性能的影响[J]. 交通运输工程学报, 2011, 11(3): 47-54. doi: 10.3969/j.issn.1671-1637.2011.03.009WU Lei, ZHONG Shuo-qiao, JIN Xue-song, et al. Influence of polygonal wheel on running safety of vehicle[J]. Journal of Traffic and Transportation Engineering, 2011, 11(3): 47-54. (in Chinese). doi: 10.3969/j.issn.1671-1637.2011.03.009 [20] 方翁武, 刘韦, 罗世辉, 等. 轮对多边形对车辆动力学性能的影响[J]. 机车电传动, 2013(4): 59-62. doi: 10.3969/j.issn.1000-128X.2013.04.017FANG Weng-wu, LIU Wei, LUO Shi-hui, et al. Influence of wheel polygonization on vehicles dynamics[J]. Electric Drive for Locomotives, 2013(4): 59-62. (in Chinese). doi: 10.3969/j.issn.1000-128X.2013.04.017 [21] 雷晓燕, 刘林芽, 圣小珍. 轮轨噪声预测与控制方法综述[J]. 城市轨道交通研究, 2005(1): 45-49. doi: 10.3969/j.issn.1007-869X.2005.01.013LEI Xiao-yan, LIU Lin-ya, SHENG Xiao-zhen. Prediction and control of wheel/rail noise[J]. Urban Mass Transit, 2005(1): 45-49. (in Chinese). doi: 10.3969/j.issn.1007-869X.2005.01.013 [22] 王远, 佟岩. 高速动车组车轮多边形对车内噪声的影响[J]. 噪声与振动控制, 2018, 38(1): 147-150. doi: 10.3969/j.issn.1006-1355.2018.01.029WANG Yuan, TONG Yan. Influence of polygonal wheels on interior noise of high-speed trains[J]. Noise and Vibration Control, 2018, 38(1): 147-150. (in Chinese). doi: 10.3969/j.issn.1006-1355.2018.01.029 [23] 金学松, 沈志云. 轮轨滚动接触疲劳问题研究的最新进展[J]. 铁道学报, 2001, 23(2): 92-108. doi: 10.3321/j.issn:1001-8360.2001.02.019JIN Xue-song, SHEN Zhi-yun. Rolling contact fatigue of wheel/rail and its advanced research progress[J]. Journal of the China Railway Society, 2001, 23(2): 92-108. (in Chinese). doi: 10.3321/j.issn:1001-8360.2001.02.019 [24] BARKE D W, CHIU W K. A review of the effects of out-of-round wheels on track and vehicle components[J]. Journal of Rail and Rapid Transit, 2005, 219(3): 157-175. [25] 罗仁, 曾京, 邬平波, 等. 高速列车车轮不圆顺磨耗仿真及分析[J]. 铁道学报, 2010, 32(5): 30-35. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201005007.htmLUO Ren, ZENG Jing, WU Ping-bo, et al. Simulation and analysis of wheel out-of-roundness wear of high-speed train[J]. Journal of the China Railway Society, 2010, 32(5): 30-35. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201005007.htm [26] 韩光旭. 高速列车车轮非圆化对振动噪声的影响及演变规律研究[D]. 成都: 西南交通大学, 2015.HAN Guang-xu. Influence of wheel's out-of-round on vibration and noise and their evolution based on high-speed trains[D]. Chengdu: Southwest Jiaotong University, 2015. (in Chinese). [27] 韩光旭, 张捷, 肖新标, 等. 高速动车组车内异常振动噪声特性与车轮非圆化关系研究[J]. 机械工程学报, 2014, 50(22): 113-121. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201422018.htmHAN Guang-xu, ZHANG Jie, XIAO Xin-biao, et al. Study on high-speed train abnormal interior vibration and noise related to wheel roughness[J]. Journal of Mechanical Engineering, 2014, 50(22): 113-121. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201422018.htm [28] 韩光旭, 温泽峰, 张捷, 等. 车轮非圆化对高速列车振动噪声的影响[J]. 噪声与振动控制, 2014, 34(4): 10-13, 23. doi: 10.3969/j.issn.1006-1335.2014.04.003HAN Guang-xu, WEN Ze-feng, ZHANG Jie, et al. Influence of out-of-roundness of wheels of high-speed trains on interior vibration and noise[J]. Noise and Vibration Control, 2014, 34(4): 10-13, 23. (in Chinese). doi: 10.3969/j.issn.1006-1335.2014.04.003 [29] ZHANG Jie, HAN Guang-xu, XIAO Xin-biao, et al. Influence of wheel polygonal wear on interior noise of high-speed trains[J]. Journal of Zhejiang University—Science A (Applied Physics and Engineering), 2014, 15(12): 1002-1018. [30] 韩铁礼, 贾尚帅, 吴越, 等. 车轮高阶多边形磨耗对高速列车转向架区域噪声影响研究[J]. 噪声与振动控制, 2019, 39(3): 88-91, 127. doi: 10.3969/j.issn.1006-1355.2019.03.017HAN Tie-li, JIA Shang-shuai, WU Yue, et al. Effect of high-order wheel polygonal wear on the noise of bogie area of high speed trains[J]. Noise and Vibration Control, 2019, 39(3): 88-91, 127. (in Chinese). doi: 10.3969/j.issn.1006-1355.2019.03.017 [31] 温士明, 李伟, 朱强强, 等. 地铁车轮多边形磨损对浮置板轨道振动特性的影响[J]. 噪声与振动控制, 2018, 38(4): 116-122. doi: 10.3969/j.issn.1006-1355.2018.04.023WEN Shi-ming, LI Wei, ZHU Qiang-qiang, et al. Influence of polygonal wear of metro wheels on vibration characteristics of floating slab tracks[J]. Nosie and Vibration Control, 2018, 38(4): 116-122. (in Chinese). doi: 10.3969/j.issn.1006-1355.2018.04.023 [32] 周素霞, 李福胜, 谢基龙, 等. 基于损伤容限的动车组车轴实测载荷谱等效应力评价[J]. 机械工程学报, 2015, 51(8): 131-136. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201508019.htmZHOU Su-xia, LI Fu-sheng, XIE Ji-long, et al. Equivalent stress evaluation of the load spectrum measured on the EMU axle based on damage tolerance[J]. Journal of Mechanical Engineering, 2015, 51(8): 131-136. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201508019.htm [33] 李广全, 刘志明, 呙如兵, 等. 高速列车齿轮箱应力响应与疲劳损伤评估[J]. 交通运输工程学报, 2018, 18(1): 79-88. doi: 10.3969/j.issn.1671-1637.2018.01.008LI Guang-quan, LIU Zhi-ming, GUO Ru-bing, et al. Stress response and fatigue damage assessment of high-speed train gearbox[J]. Journal of Traffic and Transportation Engineering, 2018, 18(1): 79-88. (in Chinese). doi: 10.3969/j.issn.1671-1637.2018.01.008 [34] 罗光兵. 高速客车车轮不圆对车辆振动影响的分析[J]. 铁路计算机运用, 2017, 26(7): 74-77, 83. https://www.cnki.com.cn/Article/CJFDTOTAL-TLJS201707021.htmLUO Guang-bing. Analysis on influence of wheel non circle of high speed passenger train for vehicle vibration[J]. Railway Computer Application, 2017, 26(7): 74-77, 83. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TLJS201707021.htm [35] 宋志坤, 岳仁法, 胡晓依, 等. 车轮多边形对车辆振动及轮轨力的影响[J]. 北京交通大学学报, 2017, 41(6): 88-93. https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT201706016.htmSONG Zhi-kun, YUE Ren-fa, HU Xiao-yi, et al. Influence of wheel polygon on vehicle vibration and wheel/rail force[J]. Journal of Beijing Jiaotong University, 2017, 41(6): 88-93. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT201706016.htm [36] 彭来先, 韩健, 初东博, 等. 高速动车组垂向止挡异常振动特性及成因分析[J]. 机械工程学报, 2019, 55(12): 121-127. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201912014.htmPENG Lai-xian, HAN Jian, CHU Dong-bo, et al. Analysis of abnormal vibration characteristics and causes of vertical block in high-speed EMU[J]. Journal of Mechanical Engineering, 2019, 55(12): 121-127. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201912014.htm [37] 戚潇月, 宋冬利, 张卫华. 车轮多边形对车辆动力学的影响分析及在线诊断方法研究[J]. 铁道机车车辆, 2018, 38(4): 10-17. doi: 10.3969/j.issn.1008-7842.2018.04.03QI Xiao-yue, SONG Dong-li, ZHANG Wei-hua. Analysis influence of wheel polyonalization on vehicle dynamics and research on online diagnosis[J]. Railway Locomotive and Car, 2018, 38(4): 10-17. (in Chinese). doi: 10.3969/j.issn.1008-7842.2018.04.03 [38] 张旗, 杨超, 董孝卿, 等. 车轮多边形对动力学性能影响研究[J]. 铁道机车车辆, 2017, 37(3): 58-60. doi: 10.3969/j.issn.1008-7842.2017.03.13ZHANG Qi, YANG Chao, DONG Xiao-qing, et al. Research on influence of wheel polygon on dynamic performance[J]. Railway Locomative and Car, 2017, 37(3): 58-60. (in Chinese). doi: 10.3969/j.issn.1008-7842.2017.03.13 [39] 刘佳, 韩健, 肖新标, 等. 高速车轮非圆化磨耗对轴箱端盖异常振动影响初探[J]. 机械工程学报, 2017, 53(20): 98-105. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201720013.htmLIU Jia, HAN Jian, XIAO Xin-biao, et al. Influence of wheel non-circular wear on axle box cover abnormal vibration in high-speed train[J]. Journal of Mechanical Engineering, 2017, 53(20): 98-105. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201720013.htm [40] 钱卿. 武广高铁车轮多边形综合整治研究[J]. 铁道机车车辆, 2019, 39(2): 50-54. doi: 10.3969/j.issn.1008-7842.2019.02.10QIAN Qing. Study on wheel polygon comprehensive improvement of Wuguang High-speed Line[J]. Railway Locomotive and Car, 2019, 39(2): 50-54. (in Chinese). doi: 10.3969/j.issn.1008-7842.2019.02.10 [41] 邹航宇, 张卫华, 王志伟. 车轮多边形化对高速列车齿轮箱体动态响应的影响[J]. 机车电传动, 2017(6): 52-56. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201706014.htmZOU Hang-yu, ZHANG Wei-hua, WANG Zhi-wei. Influence of wheel polygonization on dynamic response of gearbox housing of high-speed train[J]. Electric Drive for Locomotives, 2017(6): 52-56. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201706014.htm [42] 王宏谋. 某型动车组制动盘异常振动分析及缓解措施研究[J]. 铁道机车车辆, 2019, 39(4): 52-54, 72. doi: 10.3969/j.issn.1008-7842.2019.04.11WANG Hong-mou. Analysis and study on abnormal vibration of braking disc of EMU[J]. Railway Locomotive and Car, 2019, 39(4): 52-54, 72. (in Chinese). doi: 10.3969/j.issn.1008-7842.2019.04.11 [43] 陈伟, 戴焕云, 罗仁. 高速列车车轮高阶多边形对车辆动力学性能的影响[J]. 铁道车辆, 2014, 52(12): 4-8. doi: 10.3969/j.issn.1002-7602.2014.12.002CHEN Wei, DAI Huan-yun, LUO Ren. Effect of high order polygons of wheels for high speed trains on dynamics performance of vehicles[J]. Rolling Stock, 2014, 52(12): 4-8. (in Chinese). doi: 10.3969/j.issn.1002-7602.2014.12.002 [44] 吴越, 韩健, 刘佳, 等. 高速列车车轮多边形磨耗对轮轨力和转向架振动行为的影响[J]. 机械工程学报, 2018, 54(4): 37-46. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201804006.htmWU Yue, HAN Jian, LIU Jia, et al. Effect of high-speed train polygonal wheels on wheel/rail contact force and bogie vibration[J]. Journal of Mechanical Engineering, 2018, 54(4): 37-46. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201804006.htm [45] CHEN Mei, SUN Yu, GUO Yu, et al. Study on effect of wheel polygonal wear on high-speed vehicle-track-subgrade vertical interactions[J]. Wear, 2019, 432/433: 102914-1-9. doi: 10.1016/j.wear.2019.05.029 [46] BROMMUNDT E. A simple mechanism for the polygonalization of railway wheels by wear[J]. Mechanics Research Communications, 1997, 24(4): 435-442. doi: 10.1016/S0093-6413(97)00047-5 [47] MEYWERK M. Polygonalizaiton of railway wheels[J]. Archive of Applied Mechanics, 1999, 69(2): 102-120. [48] MORYS B. Enlargement of out-of-round wheel profiles on high speed trains[J]. Journal of Sound and Vibration, 1999, 227(5): 965-978. doi: 10.1006/jsvi.1999.2055 [49] MEINKE P, MEINKE S. Polygonalization of wheel treads caused by static and dynamic imbalances[J]. Journal of Sound and Vibration, 1999, 227(5): 979-986. doi: 10.1006/jsvi.1999.2590 [50] JIN Xue-song, WU Lei, FANG Jian-ying, et al. An investigation into the mechanism of the polygonal wear of metro train wheels and its effect on the dynamic behaviour of a wheel/rail system[J]. Vehicle System Dynamics, 2012, 50(12): 1817-1834. doi: 10.1080/00423114.2012.695022 [51] 李伟, 李言义, 张雄飞, 等. 地铁车辆车轮多边形的机理分析[J]. 机械工程学报, 2013, 49(18): 17-22. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201318003.htmLI Wei, LI Yan-yi, ZHANG Xiong-fei, et al. Mechanism of the polygonal wear of metro train wheels[J]. Journal of Mechanical Engineering, 2013, 49(18): 17-22. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201318003.htm [52] 杨晓璇. A型地铁车辆车轮多边形形成机理初步研究[D]. 成都: 西南交通大学, 2018.YANG Xiao-xuan. Preliminary study on mechanism of wheel polygon of type A metro vehicle[J]. Chengdu: Southwest Jiaotong University, 2018. (in Chinese). [53] TAO Gong-quan, WANG Lin-feng, WEN Ze-feng, et al. Experimental investigation into the mechanism of the polygonal wear of electric locomotive wheels[J]. Vehicle System Dynamics, 2018, 56(6): 883-899. doi: 10.1080/00423114.2017.1399210 [54] PENG Bo, IWNICKI S, SHACKETON P, et al. The influence of wheelset flexibility on polygonal wear of locomotive wheels[J]. Wear, 2019, 432/433: 102917-1-11. doi: 10.1016/j.wear.2019.05.032 [55] JOHANSSON A, ANDERSSON C. Out-of-round railway wheels—a study of wheel polygonalization through simulation of three-dimensional wheel-rail interaction and wear[J]. Vehicle System Dynamics, 2005, 43(8): 539-559. doi: 10.1080/00423110500184649 [56] 李大地, 戴焕云. 基于钢轨模态振动的车轮高阶多边形频率特性研究[J]. 铁道机车车辆, 2017, 37(4): 6-11. doi: 10.3969/j.issn.1008-7842.2017.04.02LI Da-di, DAI Huan-yun. Research on wheel polygonization frequencies based on modal analysis of rail[J]. Railway Locomotive and Car, 2017, 37(4): 6-11. (in Chinese). doi: 10.3969/j.issn.1008-7842.2017.04.02 [57] 李大地. 基于钢轨模态振动的车轮多边形机理研究[D]. 成都: 西南交通大学, 2017.LI Da-di. Mechanism study of wheel polygonization based on modal analysis of rail[D]. Chengdu: Southwest Jiaotong University, 2017. (in Chinese). [58] WU Yue, DU Xing, ZHANG He-ji, et al. Experimental analysis of the mechanism of high-order polygonal wear of wheels of a high-speed train[J]. Journal of Zhejiang University—Science A (Applied Physics and Engineering), 2017, 18(8): 579-592. doi: 10.1631/jzus.A1600741 [59] WU Xing-wen, RAKHEJA S, CAI Wu-bin, et al. A study of formation of high order wheel polygonalization[J]. Wear, 2019, 424/425: 1-14. doi: 10.1016/j.wear.2019.01.099 [60] DEKKER H. Vibrational resonances of nonrigid vehicles: polygonization and ripple patterns[J]. Applied Mathematical Modelling, 2009, 33(3): 1349-1355. doi: 10.1016/j.apm.2008.01.025 [61] MEYWERK M. Polygonalization of railway wheels[J]. Archive of Applied Mechanics, 1999, 69(2): 105-120. doi: 10.1007/s004190050208 [62] 陈光雄, 金学松, 邬平波, 等. 车轮多边形磨耗机理的有限元研究[J]. 铁道学报, 2011, 33(1): 14-18. doi: 10.3969/j.issn.1001-8360.2011.01.003CHEN Guang-xiong, JIN Xue-song, WU Ping-bo, et al. Finite element study on the generation mechanism of polygonal wear of railway wheels[J]. Journal of the China Railway Society, 2011, 33(1): 14-18. (in Chinese). doi: 10.3969/j.issn.1001-8360.2011.01.003 [63] 王科. 基于摩擦自激振动引起高速列车车轮多边形磨耗的仿真研究[D]. 成都: 西南交通大学, 2017.WANG Ke. A numerical simulation of wheel polygonization of high-speed trains based on friction-induced vibration[J]. Chengdu: Southwest Jiaotong University, 2017. (in Chinese). [64] 周殿买, 杨集友, 徐彬. 动车组车轮多边形机理分析[J]. 城市轨道交通研究, 2017(1): 25-27, 37. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201702010.htmZHOU Dian-mai, YANG Ji-you, XU Bin. Analysis of EMU wheel polygonization mechanism[J]. Urban Mass Transit, 2017(1): 25-27, 37. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201702010.htm [65] 马卫华, 罗世辉, 宋荣荣. 地铁车辆车轮多边形化形成原因分析[J]. 机械工程学报, 2012, 48(24): 106-111. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201224019.htmMA Wei-hua, LUO Shi-hui, SONG Rong-rong. Analyses of the form reason of wheel polygonization of subway vehicle[J]. Journal of Mechanical Engeering, 2012, 48(24): 106-111. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201224019.htm [66] 付彬. 地铁车辆车轮多边形形成机理探究[D]. 成都: 西南交通大学, 2017.FU Bin. Study into mechanism of wheel polygonalization of metro vehicle[J]. Chengdu: Southwest Jiaotong University, 2017. (in Chinese). [67] 袁雨青, 李强, 杨光. 横向振动对列车车轮多边形磨耗的影响[J]. 北京交通大学学报, 2016, 40(1): 80-85. doi: 10.11860/j.issn.1673-0291.2016.01.013YUAN Yu-qing, LI Qiang, YANG Guang. Influence of lateral vibration on wheel polygonization[J]. Journal of Beijing Jiaotong University, 2016, 40(1): 80-85. (in Chinese). doi: 10.11860/j.issn.1673-0291.2016.01.013 [68] ZHAO Xiao-nan, CHEN Guang-xiong, LYU Jin-zhou, et al. Study on the mechanism for the wheel polygonal wear of high-speed trains in terms of the frictional self-excited vibration theory[J]. Wear, 2019, 426/427: 1820-1827. doi: 10.1016/j.wear.2019.01.020 [69] NIELSEN J C O, JOHANSSON A. Out-of-round railway wheels—a literature survey[J]. Journal of Rail and Rapid Transit, 2000, 214(2): 79-91. doi: 10.1243/0954409001531351 [70] NIELSEN J C O, LUNDEN R, JOHANSSON A, et al. Train-track interaction and mechanisms of irregular wear on wheel and rail surfaces[J]. Vehicle System Dynamics, 2003, 40(1-3): 3-54. [71] 宋春元, 沈文林, 李晓峰, 等. 高速动车组车轮多边形影响因素及抑制措施研究[J]. 中国铁路, 2017(11): 33-40. https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201711005.htmSONG Chun-yuan, SHEN Wen-lin, LI Xiao-feng, et al. On the influencing factors and inhibiting measures of wheel polygons of high-speed EMUs[J]. China Railway, 2017(11): 33-40. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201711005.htm [72] 沈文林, 宋春元, 李国栋, 等. 高速动车组车轮硬度与车轮多边形形成关系及解决措施研究[J]. 铁道机车车辆, 2018, 38(4): 18-23. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201804007.htmSHEN Wen-lin, SONG Chun-yuan, LI Guo-dong, et al. Research for high-speed EMU wheel hardness and polygon-form relationships with solutions[J]. Railway Locomotive and Car, 2018, 38(4): 18-23. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201804007.htm [73] 孙海荣, 蒋洁, 刘先升, 等. 动车组车轮高阶不圆度成因分析[J]. 佳木斯大学学报(自然科学版), 2018, 36(2): 281-283, 295. https://www.cnki.com.cn/Article/CJFDTOTAL-JMDB201802032.htmSUN Hai-rong, JIANG Jie, LIU Xian-sheng, et al. The research and analysis of EMU wheel polygonization factors[J]. Journal of Jiamusi University (Natural Science Edition), 2018, 36(2): 281-283, 295. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JMDB201802032.htm [74] LECHOWICZ S, HUNT C. Monitoring and managing wheel condition and loading[C]//National Transportation Safety Board. Proceedings of the International Symposium on Transportation Recorders. Arlington: National Transportation Safety Board, 1999: 205-239. [75] MINORU O. Development of trackside rolling stock monitoring system[J]. Japanese Railway Engineering, 1999(142): 24-28. [76] BELOTTI V, CRENNA F, MICHLINI R C, et al. Wheel-flat diagnostic tool via wavelet transform[J]. Mechanical Systems and Signal Processing, 2006, 20(8): 1953-1966. [77] DONATO P G, URENA J, MAZO M, et al. Design and signal processing of a magnetic sensor arrey for train wheel detection[J]. Sensors and Actuators A: Physical, 2006, 132(2): 516-525. [78] STRATMAN B, LIU Yong-ming, MAHADEVAN S. Structural health monitoring of railroad wheels using wheel impact load detectors[J]. Journal of Failure Analysis and Prevention, 2007, 7(3): 218-225. [79] ZAKHAROV S M, ZHAROV I A. Criteria of bogie performance and wheel/rail wear prediction based on wayside measurements[J]. Wear, 2005, 258: 1135-1141. [80] ZOBORY I. Prediction of wheel/rail profile wear[J]. Vehicle System Dynamics, 1997, 28(2/3): 221-259. [81] 李奕璠. 轮轨力连续测试方法及车轮失圆的检测与识別研究[D]. 成都: 西南交通大学, 2012.LI Yi-fan. Wheel-rail force continuous measurement method and out-of-round wheel detection and identification[J]. Chengdu: Southwest Jiaotong University, 2012. (in Chinese). [82] 雷晓燕, 杨天, 刘庆杰. "车体-多边形化车轮-轨道"耦合系统动力分析及多边形车轮识别[J]. 噪声与振动控制, 2019, 39(2): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK201902002.htmLEI Xiao-yan, YANG Tian, LIU Qing-jie. Dynamic analysis and out-of-round wheel recognition of"body-out-of-round wheel-rail" coupling system[J]. Noise and Vibration Control, 2019, 39(2): 1-6. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK201902002.htm [83] 冯坚强, 李俊明, 王晓浩, 等. 基于LSSVM和PNN的车轮状态安全域估计及故障诊断[J]. 信息技术, 2017(1): 141-145, 163. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZHD201701038.htmFENG Jian-qiang, LI Jun-ming, WANG Xiao-hao, et al. Safety region estimation and fault diagnosis of wheels based on least squares support vector machine and probabilistic neural networks[J]. Information Technology, 2017(1): 141-145, 163. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZZHD201701038.htm [84] WU Xing-wen, RAKHEJA S, QU Sheng, et al. Dynamic responses of a high-speed railway car due to wheel polygonalisation[J]. Vehicle System Dynamics, 2018, 56(12): 1-21. [85] 孙琦, 张兵, 李艳萍, 等. 一种波长固定的车轮多边形在线故障检测方法[J]. 铁道科学与工程学报, 2018, 15(9): 2343-2348. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201809022.htmSUN Qi, ZHANG Bing, LI Yan-ping, et al. Wavelength-fixing mechanisms for detecting the wheel polygon-shaped fault onsite[J]. Journal of Railway Science and Engineering, 2018, 15(9): 2343-2348. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201809022.htm [86] MAGNUS W, LENNART N. Advanced measurement methods make wheels rounder[J]. Noise and Vibration Control, 2006, 12(6): 1-4. [87] 王瑞乾, 李晔, 储丽霞, 等. 轨道交通车辆车轮显著多边形提取方法[J]. 噪声与振动控制, 2017, 37(1): 82-85, 97. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK201701018.htmWANG Rui-qian, LI Ye, CHU Li-xia, et al. Method for extracting significant polygons of railway wheels[J]. Noise and Vibration Control, 2017, 37(1): 82-85, 97. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK201701018.htm [88] 张凯轩, 周劲松, 宫岛, 等. 车轮非圆化对地铁车辆振动的影响研究[J]. 机械设计与制造工程, 2018, 47(4): 82-86. https://www.cnki.com.cn/Article/CJFDTOTAL-JXZZ201804018.htmZHANG Kai-xuan, ZHOU Jin-song, GONG Dao, at al. Analysis on the influence of wheel non-roundness to the vibration of metro vehicle[J]. Machine Design and Manufacturing Engineering, 2018, 47(4): 82-86. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXZZ201804018.htm [89] 尹振坤, 吴越, 韩健. 高速列车车轮多边形磨耗对轮轨垂向力的影响[J]. 铁道学报, 2017, 39(10): 26-32. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201710004.htmYIN Zhen-kun, WU Yue, HAN Jian. Effect of polygonal wear of high-speed train wheels on vertical force between wheel and rail[J]. Journal of the China Railway Society, 2017, 39(10): 26-32. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201710004.htm [90] KALOUSEK J, JOHNSON K L. An investigation of short pitch wheel and rail corrugations on the vancouver mass transit system[J]. Journal of Rail and Rapid Transit, 1992, 206(26): 127-135. [91] 赵晓男, 陈光雄, 崔晓璐, 等. 高速列车车轮多边形磨耗的形成机理及影响因素探究[J]. 表面技术, 2018, 47(8): 8-13. https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS201808002.htmZHAO Xiao-nan, CHEN Guang-xiong, CUI Xiao-lu, et al. Formation mechanism and influencing factors of the polygonal wear of high-speed train wheels[J]. Surface Technology, 2018, 47(8): 8-13. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS201808002.htm [92] ZHAO Xiao-nan, CHEN Guang-xiong, LYU Jin-zhou. et al. Study on the mechanism for the wheel polygonal wear of high-speed trains in terms of the frictional self-excited vibration theory[J]. Wear, 2019, 426/427: 1820-1827. [93] 张志波. 研磨子对车轮不圆的修形作用[J]. 中国铁路, 2018(1): 36-40. https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201801007.htmZHANG Zhi-bo. Influence of grinder application to profile adjustment of wheel polygon[J]. China Railway, 2018(1): 36-40. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201801007.htm [94] 伍安旭, 冯畅, 吴波, 等. 基于研磨子的车轮多边形抑制机理与跟踪试验[J]. 城市轨道交通研究, 2019(3): 143-146. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201905040.htmWU An-xu, FENG Chang, WU Bo, et al. Suppression mechanism of wheel polygon and tracing test based on abrasive block[J]. Urban Mass Transit, 2019(3): 143-146. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201905040.htm [95] LIU Xiao-yuan, ZHAI Wan-ming. Analysis of vertical dynamic wheel/rail interaction caused by polygonal wheels on high-speed trains[J]. Wear, 2014, 314(1/2): 282-290. [96] 高静涛, 杨鑫, 秦传鑫. 动车组不落轮车床等效锥度及车轮多边形检测功能的设计与实现[J]. 铁道机车车辆, 2018, 38(5): 51-55. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201805015.htmGAO Jing-tao, YANG Xin, QIN Chuan-xin. Design and implementation of equivalent conicity and wheel polygonal detection on EMUs' online wheelset lathe[J]. Railway Locomotive and Car, 2018, 38(5): 51-55. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201805015.htm [97] 任德祥, 陶功权, 刘欢, 等. 机车多边形磨耗车轮镟修异常原因分析及改进措施[J]. 中南大学学报(自然科学版), 2019, 50(9): 2317-2326. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201909029.htmREN De-xiang, TAO Gong-quan, LIU Huan, et al. Analysis of abnormal turning repair for locomotive wheels with polygonal wear and improvement measures[J]. Journal of Central South University (Science and Technology), 2019, 50(9): 2317-2326. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201909029.htm