留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于交叉感应回线的磁浮车辆连续测速定位方法

任愈 陈建政

任愈, 陈建政. 基于交叉感应回线的磁浮车辆连续测速定位方法[J]. 交通运输工程学报, 2020, 20(1): 140-149. doi: 10.19818/j.cnki.1671-1637.2020.01.011
引用本文: 任愈, 陈建政. 基于交叉感应回线的磁浮车辆连续测速定位方法[J]. 交通运输工程学报, 2020, 20(1): 140-149. doi: 10.19818/j.cnki.1671-1637.2020.01.011
REN Yu, CHEN Jian-zheng. Continuous velocity and location detection method of maglev vehicle based on cross inductive loop[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 140-149. doi: 10.19818/j.cnki.1671-1637.2020.01.011
Citation: REN Yu, CHEN Jian-zheng. Continuous velocity and location detection method of maglev vehicle based on cross inductive loop[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 140-149. doi: 10.19818/j.cnki.1671-1637.2020.01.011

基于交叉感应回线的磁浮车辆连续测速定位方法

doi: 10.19818/j.cnki.1671-1637.2020.01.011
基金项目: 

国家自然科学基金项目 51875485

对发展中国家科技援助项目 KY201701001

详细信息
    作者简介:

    任愈(1981-), 四川南充人, 西南交通大学助理研究员, 工学博士, 从事车辆运行安全检测与性能评估研究

  • 中图分类号: U270.7

Continuous velocity and location detection method of maglev vehicle based on cross inductive loop

More Information
  • 摘要: 分析了交叉回线区域空间磁场分布, 利用磁通密度纵向分布周期性特征, 将车辆位移、速度用感应电压包络信号相位角与角速度来表征; 建立了采用简单交叉回线的车辆测速定位状态空间方程组, 将车辆运行位置和速度作为状态变量在测试过程中连续输出; 考虑实际运行工况下的复杂电磁环境, 引入了噪声自适应算法, 提出了基于新息自适应的磁浮车辆实时连续测速定位计算方法; 在实验室条件下建立了交叉感应回线标定系统, 验证了方法的基本原理; 为了验证方法的有效性和准确性, 进了数值仿真算例分析, 考虑正常噪声和突变噪声工况, 并对比了包含和不包含自适应噪声处理过程的计算结果。试验结果表明: 不同间隔距离条件下, 感应电压包络线都接近于正弦波, 1次谐波是包络信号的主要成分, 相同阶次的谐波幅值与间隔距离成近似线性关系, 与理论分析结果一致; 在正常噪声区段, 速度误差不超过0.03 m·s-1, 定位误差约为3 mm, 在突变噪声区段, 速度误差均值为0.027 m·s-1, 最大值为0.130 m·s-1, 定位误差均值为4.82 mm, 最大值为23.39 mm, 说明测速定位方法可以满足实际应用需求; 数值仿真中突变噪声区段的低信噪比信号在实际应用中是极端情况, 对比正常噪声区段和突变噪声区段的计算结果可知改善输入信号的信噪比可以明显提高测试精度。

     

  • 图  1  交叉感应回线

    Figure  1.  Cross inductive loop

    图  2  幅值检测原理

    Figure  2.  Detection principle of amplitude

    图  3  相位检测原理

    Figure  3.  Detection principle of phase

    图  4  交叉回线磁通密度

    Figure  4.  Magnetic flux density of cross loop

    图  5  磁通密度分布

    Figure  5.  Distribution of magnetic flux density

    图  6  感应电压及其包络信号

    Figure  6.  Induced voltage and its envelope signal

    图  7  谐波幅值与间隔距离的关系

    Figure  7.  Relationships between harmonic amplitudes and interval distances

    图  8  接收线圈宽度和感应电压关系

    Figure  8.  Relationship between of receiving coil width and induced voltage

    图  9  标定数据及其包络信号特征

    Figure  9.  Calibration data and their envelope signal characteristics

    图  10  包含正常噪声和突变噪声的包络信号

    Figure  10.  Envelope signal containing normal noise and abrupt noise

    图  11  测速定位计算结果

    Figure  11.  Calculation results of speed and location detection

    表  1  突变噪声区段计算结果

    Table  1.   Calculation results of abrupt noise section

    计算方法 定位误差/mm 速度误差/(m·s-1)
    均值 最大值 均值 最大值
    EKF 8.06 39.69 0.046 0.21
    IAEKF 4.82 23.39 0.027 0.13
    下载: 导出CSV
  • [1] LEE H W, KIM K C, LEE J. Review of maglev train technologies[J]. IEEE Transactions on Magnetics, 2006, 42(7): 1917-1925. doi: 10.1109/TMAG.2006.875842
    [2] 龙志强, 李晓龙, 周文武, 等. 磁悬浮列车的定位和测速技术研究[J]. 国防科技大学学报, 2003, 25(4): 82-88. doi: 10.3969/j.issn.1001-2486.2003.04.019

    LONG Zhi-qiang, LI Xiao-long, ZHOU Wen-wu, et al. Study on the techniques of the locating and speed-measuring of the aerotrain[J]. Journal of National University of Defense Technology, 2003, 25(4): 82-88. (in Chinese). doi: 10.3969/j.issn.1001-2486.2003.04.019
    [3] 杨建勇, 连级三. 磁悬浮列车定位测速及数据传输方法研究[J]. 铁道学报, 2001, 23(1): 60-65. doi: 10.3321/j.issn:1001-8360.2001.01.013

    YANG Jian-yong, LIAN Ji-san. Study on the methods of train locating speed measuring and data transmission for maglev train[J]. Journal of the China Railway Society, 2001, 23(1): 60-65. (in Chinese). doi: 10.3321/j.issn:1001-8360.2001.01.013
    [4] 张世聪. 适用于磁浮列车的测速定位方法研究综述[J]. 铁道标准设计, 2018, 62(10): 186-191. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201810037.htm

    ZHANG Shi-cong. Research review of speed and position detection methods applied to maglev trains[J]. Railway Standard Design, 2018, 62(10): 186-191. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201810037.htm
    [5] 吴峻, 周文武, 李璐. 高速磁浮列车测速定位系统的研究[J]. 国防科技大学学报, 2011, 33(1): 109-114. doi: 10.3969/j.issn.1001-2486.2011.01.023

    WU Jun, ZHOU Wen-wu, LI Lu. Research on speed and position detection system of high speed maglev train[J]. Journal of National University of Defense Technology, 2011, 33(1): 109-114. (in Chinese). doi: 10.3969/j.issn.1001-2486.2011.01.023
    [6] MORISHITA K, KITANO J I, MAEDA T, et al. Novel train position detecting system in the Yamanashi Maglev test line[C]//TRB. 19th International Conference on Magnetically Levitated Systems and Linear Drives. Washington DC: TRB, 2006: 1-4.
    [7] XUE Song, LONG Zhi-qiang, HE Ning, et al. A high precision position sensor design and its signal processing algorithm for a maglev train[J]. Sensors, 2012, 12: 5225-5245. doi: 10.3390/s120505225
    [8] DAI Chun-hui, LONG Zhi-qiang, XIE Yun-de, et al. Research on the filtering algorithm in speed and position detection of maglev trains[J]. Sensors, 2011, 11: 7204-7218. doi: 10.3390/s110707204
    [9] XUE Song, DAI Chun-hui, LONG Zhi-qiang. Research on location and speed detection for high speed maglev train based on long stator[C]//IEEE. Proceedings of the 8th World Congress on Intelligent Control and Automation. New York: IEEE, 2010: 6953-6958.
    [10] 钱存元, 邵德荣, 谢维达, 等. 高速磁悬浮列车测速定位系统的设计与研究[J]. 仪表技术与传感器, 2004(9): 34-36. doi: 10.3969/j.issn.1002-1841.2004.09.015

    QIAN Cun-yuan, SHAO De-rong, XIE Wei-da, et al. Design and research on speed and position detection system for high-speed maglev train[J]. Instrument Technique and Sensor. 2004(9): 34-36. (in Chinese). doi: 10.3969/j.issn.1002-1841.2004.09.015
    [11] 李萌, 曹林, 王东峰. 用于机车测速的雷达传感器算法研究[J]. 传感器与微系统, 2016, 35(12): 69-71. https://www.cnki.com.cn/Article/CJFDTOTAL-CGQJ201612020.htm

    LI Meng, CAO Lin, WANG Dong-feng. Algorithm study of radar sensor for locomotive speed measuring[J]. Transducer and Microsystem Technologies, 2016, 35(12): 69-71. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CGQJ201612020.htm
    [12] 姬冰冰, 买培培, 苏涛. 一种基于卡尔曼滤波的机车测速雷达算法[J]. 火控雷达技术, 2009, 38(1): 43-47. doi: 10.3969/j.issn.1008-8652.2009.01.012

    JI Bing-bing, MAI Pei-pei, SU Tao. An algorithm based on Kalman filter for locomotive speed radar[J]. Fire Control Radar Technology, 2009, 38(1): 43-47. (in Chinese). doi: 10.3969/j.issn.1008-8652.2009.01.012
    [13] 郭小舟, 王滢, 王式雄. 高速磁悬浮列车定位测速系统[J]. 西南交通大学学报, 2004, 39(4): 455-459. doi: 10.3969/j.issn.0258-2724.2004.04.009

    GUO Xiao-zhou, WANG Ying, WANG Shi-xiong. Location and speed detection system for high-speed maglev vehicle[J]. Journal of Southwest Jiaotong University, 2004, 39(4): 455-459. (in Chinese). doi: 10.3969/j.issn.0258-2724.2004.04.009
    [14] QIAN Cun-yuan, HAN Zheng-zhi, XIE Wei-da. Research on absolute positioning system for high-speed maglev train[C]//IEEE. Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation. New York: IEEE, 2007: 922-926.
    [15] ZHANG Da-peng, LONG Zhi-qiang, XUE Song, et al. Optimal design of the absolute positioning sensor for a high-speed maglev train and research on its fault diagnosis[J]. Sensors, 2012, 12: 10621-10638. doi: 10.3390/s120810621
    [16] 陈正一, 谢维达, 钱存元. 磁浮列车绝对定位系统[J]. 电力机车与城轨车辆, 2005, 28(6): 8-10. https://www.cnki.com.cn/Article/CJFDTOTAL-DJJI200506002.htm

    CHEN Zheng-yi, XIE Wei-da, QIAN Cun-yuan. Absolute position detection system for maglev train[J]. Electric Locomotives and Mass Transit Vehicles, 2005, 28(6): 8-10. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DJJI200506002.htm
    [17] DAI Chun-hui, DOU Feng-shan, SONG Xiang-lei, et al. Analysis and design of a speed and position system for maglev vehicles[J]. Sensors, 2012, 12: 8526-8543. doi: 10.3390/s120708526
    [18] DAI Chun-hui, SONG Xiang-lei, DOU Feng-shan, et al. Study on the speed and location system for low speed maglev vehicle[C]//IEEE. Proceedings of the IEEE International Conference on Automation and Logistics. New York: IEEE, 2011: 220-224.
    [19] 宋香磊. 基于感应环线的测速定位系统的设计与实现[D]. 长沙: 国防科学技术大学, 2012.

    SONG Xiang-lei. The design and realization of the speed and location detection system based on the inductive looped-cable[D]. Changsha: National University of Defense Technology, 2012. (in Chinese).
    [20] 张斌. 基于新型感应环线的磁浮列车定位测速与通信技术研究[D]. 长沙: 国防科学技术大学, 2015.

    ZHANG Bin. The research of position and speed measurement and communication technology based on the new loop-cable for maglev train[D]. Changsha: National University of Defense Technology, 2015. (in Chinese).
    [21] DENG Zi-gang, ZHANG Wei-hua, ZHENG Jun, et al. A high-temperature superconducting maglev ring test line developed in Chengdu, China[J]. IEEE Transactions on Applied Superconductivity, 2016, 26(6): 3602408-1-8.
    [22] QIAN Nan, ZHENG Jun, LEI Wu-yang, et al. Dynamic vibration characteristics of HTS levitation systems operating on a permanent magnet guideway test line[J]. IEEE Transactions on Applied Superconductivity, 2017, 27(4): 3601405-1-5.
    [23] 勾艳凤. 高温超导磁悬浮车环形线振动特性研究[D]. 成都: 西南交通大学, 2015.

    GOU Yan-feng. Studies on the vibration characteristics of high-temperature superconducting maglev vehicles on a ring test line[D]. Chengdu: Southwest Jiaotong University, 2015. (in Chinese).
    [24] JIN Li-an, DENG Zi-gang, LEI Wu-yang, et al. Dynamic characteristics of the HTS maglev vehicle running under a low-pressure environment[J]. IEEE Transactions on Applied Superconductivity, 2019, 29(2): 3601504-1-4.
    [25] DENG Zi-gang, LI Ji-peng, ZHANG Wei-hua, et al. High-temperature superconducting magnetic levitation vehicles dynamic characteristics while running on a ring test line[J]. IEEE Vehicular Technology Magazine, 2017, 12(3): 95-102.
    [26] MOHAMED A H, SCHWARZ K P. Adaptive Kalman filtering for INS/GPS[J]. Journal of Geodesy, 1999, 73: 193-203.
    [27] HIDE C, MOORE T, SMITH M. Adaptive Kalman filtering algorithms for integrating GPS andlow cost INS[C]//IEEE. 2004 Position Location and Navigation Symposium. New York: IEEE, 2004: 227-233.
    [28] FU Min-yue, DE SOUZA C, LUO Zhi-quan. Finite-horizon robust Kalman filter design[J]. IEEE Transactions on Signal Processing, 2001, 49(9): 2103-2112.
    [29] 徐定杰, 贺瑞, 沈锋, 等. 基于新息协方差的自适应渐消卡尔曼滤波器[J]. 系统工程与电子技术, 2011, 33(12): 2696-2699. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201112025.htm

    XU Ding-jie, HE Rui, SHEN Feng, et al. Adaptive fading Kalman filter based on innovation covariance[J]. Systems Engineering and Electronics, 2011, 33(12): 2696-2699. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201112025.htm
    [30] 岳晓奎, 袁建平. 一种基于极大似然准则的自适应卡尔曼滤波算法[J]. 西北工业大学学报, 2005, 23(4): 469-474. https://www.cnki.com.cn/Article/CJFDTOTAL-XBGD200504014.htm

    YUE Xiao-kui, YUAN Jian-ping. An adaptive Kalman filtering algorithm based on maximum-likelihood criterion[J]. Journal of Northwestern Polytechnical University, 2005, 23(4): 469-474. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XBGD200504014.htm
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  633
  • HTML全文浏览量:  150
  • PDF下载量:  265
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-26
  • 刊出日期:  2020-02-25

目录

    /

    返回文章
    返回