Heat transfer characteristics for temperature of simple harmonic quantity in the cold-region tunnel and sensitivity of influencing factors
-
摘要: 为探究寒区隧道温度场的时空演化规律, 以波的视角从时间尺度和空间尺度建立了寒区隧道温度简谐波径向传热模型, 基于傅里叶传热定律推导了寒区隧道温度简谐波径向传热表达式; 依托兴安岭公路隧道温度测试结果, 验证了温度简谐波径向传热表达式的可行性, 分析了温度简谐波沿隧道径向深度的分布特征与随冻融周期的变化规律; 采用系统稳定分析法, 研究了温度简谐波对各影响因素归一化的敏感度因子。研究结果表明: 沿隧道径向深度0.00~4.00 m, 温度振幅呈负指数函数形式衰减, 变化范围为11.67℃~0.45℃; 温度相位移呈正比例函数形式增大, 变化范围为0.00~75.24 d; 年平均温度呈线性升高的趋势, 变化范围为-0.62℃~1.98℃; 受隧道区气温逐年变暖趋势的影响, 隧道进口端壁面年平均温度从2016~2019年升高了约0.75℃, 年平均温度随冻融周期逐年增大, 2.00 m深度内年平均温度受冻融周期影响较大, 超过2.00 m年平均温度受冻融周期影响相对较小; 隧道进口端壁面温度振辐从2016~2019年衰减了1.48℃, 温度振幅随冻融周期逐年衰减, 2.00 m深度内温度振幅衰减较快, 超过2.00 m温度振幅衰减较慢; 隧道进口端壁面日相位从2016~2019年延迟了7.20 d, 日相位随冻融周期逐年增大。温度简谐波对各影响因素的敏感性由高到低依次为壁面温度振幅、壁面年平均温度、围岩含冰率、围岩含水率、围岩孔隙率、骨架颗粒的质量热容量与导热系数。Abstract: In order to investigate the spatial-temporal changing laws of temperature field in cold-region tunnels, a radial heat transfer model was established of temperature of simple harmonic quantity in the cold-region tunnel according to the time and space scales from the perspective of waves. Moreover, the radial heat transfer expression of temperature of simple harmonic quantity in the cold-region tunnel was deduced based on Fourier's laws of heat transfer. Based on the temperature test results of Xing'anling Highway Tunnel, the feasibility of the radial heat transfer expression of temperature of simple harmonic quantity was verified. Distribution characteristics of temperature of simple harmonic quantity in radial depth and its variation with freeze-thaw cycles were analyzed. The sensitivity factor for this temperature was normalized to each influence factor using the system stability analysis method. Analysis result shows that within the tunnel radial depth of 0.00-4.00 m, the temperature amplitude has a range of 11.67 ℃-0.45 ℃ and it decays as a negative exponential function. The temperature phase shift has a range of 0.00-75.24 d and it increases as a proportional function. The average annual temperature increases linearly and has a range of-0.62 ℃-1.98 ℃. Affected by the annual warming trend of temperature at the tunnel site, the average annual temperature on the tunnel wall at the entrance increases by approximately 0.75 ℃ from 2016 to 2019, which increasing every year with the freeze-thaw cycles. The average annual temperature is greatly affected by the freeze-thaw cycles within a depth of 2.00 m, but less affected at depths beyond 2.00 m. The temperature amplitude on the tunnel wall at the entrance decreases by 1.48 ℃ from 2016 to 2019, and that attenuates every year with the freeze-thaw cycles. The temperature amplitude decays faster below the depth of 2.00 m, but slower above 2.00 m. The day phase on the tunnel wall at the entrance is delayed by 7.20 d from 2016 to 2019, which continues to rise every year within freeze-thaw cycles. The sensitivities of temperature of simple harmonic quantity to each influence factor from high to low are temperature amplitude and average annual temperature of tunnel wall, ice content, water content and porosity of surrounding rock, specific heat capacity and thermal conductivity of skeleton particles.
-
表 1 围岩年平均温度的拟合参数
Table 1. Fitting parameters of average annual temperature of surrounding rock
隧道名称 z/m γ/(℃·m-1) R2 林场隧道 0.00~3.60 1.29 0.906 3 无名隧道 0.00~1.24 1.97 0.997 8 祁连山隧道 0.00~4.00 0.06 0.993 2 鹧鸪山隊道 0.00~3.50 0.56 0.991 4 绥阳隧道 0.00~12.60 0.11 0.689 8 昆仑山隧道 0.00~5.00 0.07~0.09 0.998 4 风火山隧道 0.00~5.00 0.09~0.17 0.997 6 玉希莫勒盖隧道 0.00~1.90 1.80 0.785 8 表 2 兴安岭公路隧道相关参数取值
Table 2. Related parameters in the Xing'anling Highway Tunnel
序号 参数 取值 1 λs/[W·(m·K)-1] 2.50~3.20 2 λw/ [W·(m·K)-1] 0.608 0 3 λi/ [W·(m·K)-1] 2.22 4 λg/ [W·(m·K)-1] 0.022 4 5 cs/ [kJ·(kg·K)-1] 0.84~1.17 6 cw/ [kJ·(kg·K)-1] 4.18 7 ci/ [kJ·(kg·K)-1] 2.09 8 ρdr/ (kg·m-3) 2 354~2 550 9 ρw/ (kg·m-3) 1 000 10 ρi/ (kg·m-3) 900 11 Gs/(-) 2.40~2.60 12 n/% 1.83~33.20 13 w/% 0.80~30.00 14 wi/% 0.70~27.90 15 T0a/℃ -0.91~1.55 16 A0/℃ 3.83~11.67 17 φ0/℃ 125.00~148.00 表 3 温度简谐波对主要影响参数的敏感度
Table 3. Sensitivity of temperatures of simple harmonic quantity to main influencing factors
参数 A0 T0a λs Cs w wi n 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.849 7 0.119 6 0.004 0 0.009 2 0.013 0 0.024 7 0.009 3 S′k 0.825 4 0.116 2 0.003 9 0.008 9 0.012 6 0.024 0 0.009 0 -
[1] MA Qin-guo, LUO Xiao-xiao, LAI Yuan-ming, et al. Numerical investigation on thermal insulation layer of a tunnel in seasonally frozen regions[J]. Applied Thermal Engineering, 2018, 138: 280-291. doi: 10.1016/j.applthermaleng.2018.04.063 [2] ZHAO Xin, YANG Xiao-hua, ZHANG Hong-wei, et al. An analytical solution for frost heave force by the multifactor of coupled heat and moisture transfer in cold-region tunnels[J]. Cold Regions Science and Technology, 2020, 175: 103077-1-10. [3] ZHANG Sha-sha, YANG Xiao-hua, XIE Shan-jie, et al. Experimental study on improving the engineering properties of coarsegrainsulphate saline soils with inorganic materials[J]. Cold Regions Science and Technology, 2020, 170: 10290949-1-10. [4] 杜耀辉, 杨晓华, 晏长根. 季节性寒区隧道温度场数值分析[J]. 冰川冻土, 2017, 39(2): 366-374. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201702017.htmDU Yao-hui, YANG Xiao-hua, YAN Chang-gen. Numerical analysis of tunnel temperature field in seasonal frozen regions[J]. Journal of Glaciology and Geocryology, 2017, 39(2): 366-374. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201702017.htm [5] LAI Hong-peng, ZHAO Xin, KANG Zuo, et al. A new method for predicting ground settlement caused by twin-tunneling under-crossing an existing tunnel[J]. Environmental Earth Sciences, 2017, 76: 726-1-12. [6] ZHAO Xin, YANG Xiao-hua. Experimental study on water inflow characteristics of tunnel in the fault fracture zone[J]. Arabian Journal of Geoscience, 2019, 12: 399-1-14. [7] LAI Yuan-ming, ZHANG Xue-fu, YU Wen-bing, et al. Three-dimensional nonlinear analysis for the coupled problem of the heat transfer of the surrounding rock and the heat convection between the air and the surrounding rock in cold-region tunnel[J]. Tunnelling and Underground Space Technology, 2005, 20(4): 323-332. doi: 10.1016/j.tust.2004.12.004 [8] 汪双杰, 王佐, 袁堃, 等. 青藏公路多年冻土地区公路工程地质研究回顾与展望[J]. 中国公路学报, 2015, 28(12): 1-8. doi: 10.3969/j.issn.1001-7372.2015.12.001WANG Shuang-jie, WANG Zuo, YUAN Kun, et al. Qinghai-Tibet highway engineering geology in permafrost regions: review and prospect[J]. China Journal of Highway and Transport, 2015, 28(12): 1-8. (in Chinese). doi: 10.3969/j.issn.1001-7372.2015.12.001 [9] 张玉伟, 谢永利, 李又云, 等. 基于温度场时空分布特征的寒区隧道冻胀模型[J]. 岩土力学, 2018, 39(5): 1625-1632. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201805010.htmZHANG Yu-wei, XIE Yong-li, LI You-yun, et al. A frostheave model based on space-time distribution of temperature field in cold region tunnels[J]. Rock and Soil Mechanics, 2018, 39(5): 1625-1632. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201805010.htm [10] 韩跃杰, 富志鹏, 李博融. 多年冻土区隧道传热模型及温度场分布规律[J]. 中国公路学报, 2019, 32(7): 136-145. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201907016.htmHAN Yue-jie, FU Zhi-peng, LI Bo-rong. Heat transfer model and temperature field distribution law of tunnel in permafrost region[J]. China Journal of Highway and Transport, 2019, 32(7): 136-145. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201907016.htm [11] BONACINA C, COMINI G, FASANO A, et al. Numerical solution of phase-change problems[J]. International Journal of Heat Mass Transfer, 1973, 16(6): 1852-1832. [12] 赖远明, 吴紫汪, 朱元林, 等. 寒区隧道温度场、渗流场和应力场耦合问题的非线性分析[J]. 岩土工程学报, 1999, 21(5): 529-533. doi: 10.3321/j.issn:1000-4548.1999.05.001LAI Yuan-ming, WU Zi-wang, ZHU Yuan-lin, et al. Nonlinear analyses for the couple problem of temperature, seepage and stress fields in cold region tunnels[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(5): 529-533. (in Chinese). doi: 10.3321/j.issn:1000-4548.1999.05.001 [13] LAI Yuan-ming, LIU Song-yu, WU Zi-wang, et al. Approximate analytical solution for temperature fields in cold regions circular tunnels[J]. Cold Regions Science and Technology, 2002, 13(4): 43-49. [14] 何春雄, 吴紫汪, 朱林楠. 祁连山区大坂山隧道围岩的冻融状况分析[J]. 冰川冻土, 2000, 22(2): 113-120. doi: 10.3969/j.issn.1000-0240.2000.02.003HE Chun-xiong, WU Zi-wang, ZHU Lin-nan. Analysis of freeze-thaw condition in the surrounding rock wall of dabanshan tunnel in the Qilian mountains[J]. Journal of Glaciology and Geocryology, 2000, 22(2): 113-120. (in Chinese). doi: 10.3969/j.issn.1000-0240.2000.02.003 [15] ZHANG Xue-fu, LAI Yuan-ming, YU Wen-bing, et al. Non-linear analysis for the freezing-thawing situation of the rock surrounding the tunnel in cold regions under the conditions of different construction seasons, initial temperatures and insulations[J]. Tunnelling and Underground Space Technology, 2002, 17(3): 315-325. doi: 10.1016/S0886-7798(02)00030-5 [16] TAN Xian-jun, CHEN Wei-zhong, WU Guo-jun, et al. Numerical simulations of heat transfer with ice-water phase change occurring in porous media and application to a cold-region tunnel[J]. Tunnelling and Underground Space Technology, 2013, 38: 170-179. doi: 10.1016/j.tust.2013.07.008 [17] 周小涵, 曾艳华, 范磊, 等. 寒区隧道温度场的时空演化规律及温控措施研究[J]. 中国铁道科学, 2016, 37(3): 46-52. doi: 10.3969/j.issn.1001-4632.2016.03.007ZHOU Xiao-han, ZENG Yan-hua, FAN Lei, et al. Temperature-spatial evolution laws of temperature field in cold region tunnel and temperature control measures[J]. China Railway Science, 2016, 37(3): 46-52. (in Chinese). doi: 10.3969/j.issn.1001-4632.2016.03.007 [18] 张国柱, 夏才初, 殷卓. 寒区隧道轴向及径向温度分布理论解[J]. 同济大学学报(自然科学版), 2010, 38(8): 1117-1122, 1160. doi: 10.3969/j.issn.0253-374x.2010.08.003ZHANG Guo-zhu, XIA Cai-chu, YIN Zhuo. Analytical solution to axial and radial temperature of tunnel in cold region[J]. Journal of Tongji University(Natural Science), 2010, 38(8): 1117-1122, 1160. (in Chinese). doi: 10.3969/j.issn.0253-374x.2010.08.003 [19] 何海仁, 杨连裕. 寒区隧道内气温和冻深问题[J]. 铁道标准设计通讯, 1983(1): 18-21. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS198301006.htmHE Hai-ren, YANG Lian-yu. Air temperature and frozen depth problem in cold region tunnels[J]. Railway Standard Design Communication, 1983(1): 18-21. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS198301006.htm [20] 乜风鸣. 寒冻地区铁路隧道气温状态[J]. 冰川冻土, 1988, 10(4): 450-453. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT198804008.htmNIE Feng-ming. Dynamic state of air temperature in railway tunnels in cold regions[J]. Journal of Glaciology and Geocryology, 1988, 10(4): 450-453. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT198804008.htm [21] 陈建勋, 昝勇杰. 寒冷地区公路隧道防冻隔温层效果现场测试与分析[J]. 中国公路学报, 2001, 14(4): 75-79. doi: 10.3321/j.issn:1001-7372.2001.04.018CHEN Jian-xun, ZAN Yong-jie. Field test and analysis of anti-freezing thermal-protective layer effect of the highway tunnel in cold area[J]. China Journal of Highway and Transport, 2001, 14(4): 75-79. (in Chinese). doi: 10.3321/j.issn:1001-7372.2001.04.018 [22] 陈建勋, 罗彦斌. 寒冷地区隧道温度场的变化规律[J]. 交通运输工程学报, 2008, 8(2): 45-48. http://transport.chd.edu.cn/article/id/200802010CHEN Jian-xun, LUO Yan-bin. Changing rules of temperature field for tunnel in cold area[J]. Journal of Traffic and Transportation Engineering, 2008, 8(2): 45-48. (in Chinese). http://transport.chd.edu.cn/article/id/200802010 [23] ZHAO Peng-yu, CHEN Jian-xun, LUO Yan-bin, et al. Field measurement of air temperature in a cold region tunnel in northeast China[J]. Cold Regions Science and Technology, 2020, 171: 102957-1-10. [24] 谢红强, 何川, 李永林. 寒区公路隧道保温层厚度的相变温度场研究[J]. 岩石力学与工程学报, 2007, 26(增刊2): 4395-4401. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2007S2120.htmXIE Hong-qiang, HE Chuan, LI Yong-lin. Study on insulating layer thickness by phase-change temperature field of highway tunnel in cold region[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S2): 4395-4401. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2007S2120.htm [25] 黄双林. 昆仑山隧道施工期间围岩冻融圈的初步研究[J]. 冰川冻土, 2003, 25(增1): 100-103. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT2003S1022.htmHUANG Shuang-lin. Study on the active ring of permafrost in the Kunlunshan tunnel during tunneling[J]. Journal of Glaciology and Geocryology, 2003, 25(S1): 100-103. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT2003S1022.htm [26] 张先军. 青藏铁路昆仑山隧道洞内气温及地温分布特征现场试验研究[J]. 岩石力学与工程学报, 2005, 24(6): 1086-1089. doi: 10.3321/j.issn:1000-6915.2005.06.034ZHANG Xian-jun. Field experiment on distribution characters of air temperature and ground temperature in Kunlunshan tunnel of Qinghai-Tibet railway[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(6): 1086-1089. (in Chinese). doi: 10.3321/j.issn:1000-6915.2005.06.034 [27] 沈世伟, 夏才初, 黎岩, 等. 喷射混凝土对多年冻土区公路隧道围岩冻融圈的影响规律研究[J]. 现代隧道技术, 2015, 52(1): 82-88, 97. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201501013.htmSHEN Shi-wei, XIA Cai-chu, LI Yan, et al. Research on the influence of sprayed concrete on the surrounding rock freeze-thaw circle of highway tunnels in permafrost regions[J]. Modern Tunnelling Technology, 2015, 52(1): 82-88, 97. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201501013.htm [28] 姚红志, 张晓旭, 董长松. 多年冻土区公路隧道融化圈计算方法[J]. 交通运输工程学报, 2016, 16(4): 141-150. doi: 10.3969/j.issn.1671-1637.2016.04.015YAO Hong-zhi, ZHANG Xiao-xu, DONG Chang-song. Calculation method of thawing circle for highway tunnel in permafrost regions[J]. Journal of Traffic and Transportation Engineering, 2016, 16(4): 141-150. (in Chinese). doi: 10.3969/j.issn.1671-1637.2016.04.015 [29] JUN K J, HWANG Y C, YUNE C Y. Field measurement of temperature inside tunnel in winter in Gangwon, Korea[J]. Cold Regions Science and Technology, 2017, 143: 32-42. doi: 10.1016/j.coldregions.2017.08.011 [30] 张涛. 纳米多孔材料的绝热性能及催化性能研究[D]. 吉林: 吉林大学, 2014.ZHANG Tao. Study of Nano porous materials and their thermal insulation and catalytic properties[D]. Jilin: Jilin University, 2018. (in Chinese). [31] 周小涵. 寒区隧道围岩与风流的对流—导热耦合作用及其应用研究[D]. 成都: 西南交通大学, 2017.ZHOU Xiao-han. Study on coupling interaction between thermal conduction of surrounding rock and wind convection in cold area tunnel and its application[D]. Chengdu: Southwest Jiaotong University, 2017. (in Chinese). [32] 冯强. 季节性寒区隧道围岩温度场与变形特性研究[D]. 北京: 中国矿业大学, 2014.FEN Qiang. Temperature field and deformation characteristics analysis of rocks surrounding seasonal cold-region tunnels[D]. Beijing: China University of Mining and Technology, 2014. (in Chinese). [33] 邹一川, 夏才初, 张国柱. 高寒地区隧道围岩及洞内气体温度分布规律研究[J]. 西部交通科技, 2012(1): 1-4, 65. doi: 10.3969/j.issn.1673-4874.2012.01.009ZOU Yi-chuan, XIA Cai-chu, ZHANG Gu-zhu. Study on the distribution regularity of the temperature of sur-rounding rock and inner gas at tunnel in paramo area[J]. Western China Communications Science and Technology, 2012(1): 1-4, 65. (in Chinese). doi: 10.3969/j.issn.1673-4874.2012.01.009 [34] 杨罡. 兰新高铁祁连山隧道围岩温度场及冻胀力研究[D]. 西安: 西安科技大学, 2017.YANG Gang. Research on the surrounding rock temperature field and frost heave force of Qilian mountains tunnel of Lanzhou-Xinjiang high-speed railway[D]. Xi'an: Xi'an University of Science and Technology, 2017. (in Chinese). [35] 陈香利. 回头沟隧道岩石导热系数及围岩温度场分布规律研究[D]. 吉林: 吉林大学, 2018.CHEN Xiang-li. Study on thermal conductivity and distribution of surrounding rock temperature field in Huitougou tunnel[D]. Jilin: Jilin University, 2018. (in Chinese). [36] 肖洵. 高海拔季节性冻土隧道围岩温度场研究[D]. 成都: 西南交通大学, 2014.XIAO Xun. A study on temperature field in rock for seasonally frozen soil tunnels with a high altitude[D]. Chengdu: Southwest Jiaotong University, 2014. (in Chinese). [37] 赖金星. 高海拔复杂围岩公路隧道温度场特征与结构性能研究[D]. 西安: 长安大学, 2008.LAI Jin-xing. Study on temperature field feature and structure characteristics of high altitudelocalities road tunnel with complex surrounding rock[D]. Xi'an: Chang'an University, 2008. (in Chinese). [38] 刘为民, 何平, 张钊. 土体导热系数的评价与计算[J]. 冰川冻土, 2002, 24(6): 770-773. doi: 10.3969/j.issn.1000-0240.2002.06.013LIU Wei-min, HE Ping, ZHANG Zhao. A calculation method of thermal conductivity of soils[J]. Journal of Glaciology and Geocryology, 2002, 24(6): 770-773. (in Chinese). doi: 10.3969/j.issn.1000-0240.2002.06.013 [39] 张学富, 赖远明, 喻文兵, 等. 风火山隧道多年冻土回冻预测分析[J]. 岩石力学与工程报, 2004, 23(24): 4170-4178. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX20042400F.htmZHANG Xue-fu, LAI Yuan-ming, YU Wen-bing, et al. Forecast and analysis of refreezing in Fenghuoshan permafrost tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(24): 4170-4178. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX20042400F.htm [40] ZHAO Xin, ZHANG Hong-wei, LAI Hong-peng, et al. Temperature field characteristics and influencing factors on frost depth of a highway tunnel in a cold region[J]. Cold Regions Science and Technology, 2020, 179: 103141-1-17. [41] 章光, 朱维申. 参数敏感性分析与试验方案优化[J]. 岩土力学, 1993, 14(1): 51-58. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX199301005.htmZHANG Guang, ZHU Wei-shen. Parameter sensitivity analysis and optimizing for test programs[J]. Rock and Soil Mechanics, 1993, 14(1): 51-58. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX199301005.htm [42] 李思, 孙克国, 仇文革, 等. 寒区隧道温度场的围岩热学参数影响及敏感性分析[J]. 土木工程学报, 2017, 50(增1): 117-122. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2017S1021.htmLI Si, SUN Ke-guo, QIU Wen-ge, et al. Influence and sensitivity analysis of surrounding rock thermal parameters on temperature field of cold region tunnel[J]. China Civil Engineering Journal, 2017, 50(S1): 117-122. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2017S1021.htm