留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中低速磁浮车辆-桥梁耦合系统动力性能试验

李苗 马卫华 龚俊虎 刘文亮 高定刚 罗世辉

李苗, 马卫华, 龚俊虎, 刘文亮, 高定刚, 罗世辉. 中低速磁浮车辆-桥梁耦合系统动力性能试验[J]. 交通运输工程学报, 2022, 22(1): 141-154. doi: 10.19818/j.cnki.1671-1637.2022.01.012
引用本文: 李苗, 马卫华, 龚俊虎, 刘文亮, 高定刚, 罗世辉. 中低速磁浮车辆-桥梁耦合系统动力性能试验[J]. 交通运输工程学报, 2022, 22(1): 141-154. doi: 10.19818/j.cnki.1671-1637.2022.01.012
LI Miao, MA Wei-hua, GONG Jun-hu, LIU Wen-liang, GAO Ding-gang, LUO Shi-hui. Dynamic performance test of medium and low speed maglev vehicle-bridge coupled system[J]. Journal of Traffic and Transportation Engineering, 2022, 22(1): 141-154. doi: 10.19818/j.cnki.1671-1637.2022.01.012
Citation: LI Miao, MA Wei-hua, GONG Jun-hu, LIU Wen-liang, GAO Ding-gang, LUO Shi-hui. Dynamic performance test of medium and low speed maglev vehicle-bridge coupled system[J]. Journal of Traffic and Transportation Engineering, 2022, 22(1): 141-154. doi: 10.19818/j.cnki.1671-1637.2022.01.012

中低速磁浮车辆-桥梁耦合系统动力性能试验

doi: 10.19818/j.cnki.1671-1637.2022.01.012
基金项目: 

国家自然科学基金项目 51875483

中国铁建股份有限公司科技重大专项及科技资助计划 2018-A01

牵引动力国家重点实验室自主课题 2020TPL-T01

牵引动力国家重点实验室自主课题 2020TPL-T04

详细信息
    作者简介:

    李苗(1991-),男,四川营山人,西南交通大学工学博士研究生,从事中低速磁浮系统动力学研究

    罗世辉(1964-),男,江西赣州人,西南交通大学教授,工学博士

    通讯作者:

    马卫华(1979-),男,山东滕州人,西南交通大学研究员,工学博士

  • 中图分类号: U237

Dynamic performance test of medium and low speed maglev vehicle-bridge coupled system

Funds: 

National Natural Science Foundation of China 51875483

Major Special Funds for Science and Technology of CRCC 2018-A01

Independent Subject of State Key Laboratory of Traction Power 2020TPL-T01

Independent Subject of State Key Laboratory of Traction Power 2020TPL-T04

More Information
    Author Bio:

    LI Miao(1991-), male, doctoral student, limiao_0915@hotmail.com

    MA Wei-hua(1979-), male, professor, PhD, mwh@swjtu.edu.cn

    LUO Shi-hui(1964-), male, professor, PhD, shluo@swjtu.edu.cn

  • 摘要: 为探究中低速磁浮车辆-桥梁耦合系统的振动特性,对其在上海临港中低速磁浮试验基地开展了现场动力学试验,研究了车速和桥梁结构形式对耦合系统动力响应的影响;试验车辆采用(悬挂)中置式悬浮架,试验桥梁为25 m混凝土简支梁和25 m钢结构简支梁;为明确2种桥梁的固有振动特性,对其进行了模态测试;提取了不同工况下车辆-桥梁耦合系统的加速度及桥梁的垂向动位移信号;计算了垂向和横向Sperling指标、动力系数、梁端转角等车辆-桥梁耦合系统关键动力指标,详细分析了耦合系统的动态响应特性,评估了系统的振动水平。研究结果表明:混凝土梁和钢梁的垂向一阶固有频率分别为7.32、7.72 Hz,2种桥梁的各项关键动力指标均满足相关标准要求;混凝土梁和钢梁的最大加速度分别不超过0.2、1.4 m·s-2;当车速为5 km·h-1时,钢梁的垂向动力响应幅值约为混凝土梁的7.6倍;在测试的速度范围内,车辆的横向Sperling指标均小于2.5,表明车辆在混凝土梁和钢梁上运行时均具有优秀的横向平稳性;车辆空气弹簧悬挂系统的垂向固有频率峰值在车速为25 km·h-1时达到最大,通过混凝土梁和钢梁的垂向Sperling指标分别达到2.687、3.340。测试结果可为中低速磁浮车辆-桥梁耦合系统的优化设计和数值模型验证等提供有价值的参考。

     

  • 图  1  试验线中的2种桥梁

    Figure  1.  Two types of bridges in test line

    图  2  悬浮架结构

    Figure  2.  Structure of levitation frame

    图  3  车辆系统振动测点布置

    Figure  3.  Vibration measurement points layout of vehicle system

    图  4  桥梁主要尺寸与测点布置(单位:mm)

    Figure  4.  Main dimensions of bridges and their measurement points layout (unit: mm)

    图  5  现场试验照片

    Figure  5.  Photos of field tests

    图  6  桥梁垂向一阶模态信息实测结果

    Figure  6.  Measured results of vertical first-order modal information of bridges

    图  7  桥梁垂向动位移-时间曲线

    Figure  7.  Vertical dynamic displacement-time curves of bridges

    图  8  不同速度下的桥梁垂向动位移

    Figure  8.  Vertical dynamic displacement of bridges at different speeds

    图  9  桥梁变形及梁端转角计算

    Figure  9.  Calculation of bridge deformation and rotation angle of beam end

    图  10  不同速度下的桥梁动力系数

    Figure  10.  Dynamic coefficients of bridges at different speeds

    图  11  不同速度下的梁端转角

    Figure  11.  Rotation angles of beam end at different speeds

    图  12  不同速度下的桥梁最大加速度

    Figure  12.  Maximum accelerations of bridges at different speeds

    图  13  不同速度下的车体最大加速度

    Figure  13.  Maximum accelerations of car body at different speeds

    图  14  不同速度下的电磁铁最大加速度

    Figure  14.  Maximum accelerations of electromagnet at different speeds

    图  15  车辆以不同速度在不同桥梁上运行时的Sperling指标

    Figure  15.  Sperling indexes for vehicle running at different speeds on different bridges

    图  16  车辆以不同速度运行时桥梁A的垂向加速度频谱

    Figure  16.  Frequency spectra of vertical acceleration of bridge A when vehicle running at different speeds

    图  17  车辆以不同速度运行时桥梁B的垂向加速度频谱

    Figure  17.  Frequency spectra of vertical acceleration of bridge B when vehicle running at different speeds

    图  18  车辆以不同速度通过桥梁A时的车体垂向加速度频谱

    Figure  18.  Frequency spectra of vertical acceleration of car body when vehicle passing bridge A at different speeds

    图  19  车辆以不同速度通过桥梁B时的车体垂向加速度频谱

    Figure  19.  Frequency spectra of vertical acceleration of car body when vehicle passing bridge B at different speeds

    表  1  车辆主要技术参数

    Table  1.   Main technical parameters of vehicle

    参数 数值
    空气弹簧横向跨距/mm 1 930
    直线电机长度/mm 2 980
    悬浮电磁铁长度/mm 2 920
    悬浮架总质量/t 15.72
    整车质量/t 空载为31.5, 超载为39.0
    下载: 导出CSV
  • [1] 翟婉明, 赵春发. 现代轨道交通工程科技前沿与挑战[J]. 西南交通大学学报, 2016, 51(2): 209-226. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201602002.htm

    ZHAI Wan-ming, ZHAO Chun-fa. Frontiers and challenges of sciences and technologies in modern railway engineering[J]. Journal of Southwest Jiaotong University, 2016, 51(2): 209-226. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201602002.htm
    [2] YAN Lu-guang. Development and application of the maglev transportation system[J]. IEEE Transactions on Applied Superconductivity, 2008, 18(2): 92-99. doi: 10.1109/TASC.2008.922239
    [3] LEE H, KIM K, LEE J, et al. Review of maglev train technologies[J]. IEEE Transactions on Magnetics, 2006, 42(7): 1917-1925. doi: 10.1109/TMAG.2006.875842
    [4] 徐飞, 罗世辉, 邓自刚. 磁悬浮轨道交通关键技术及全速度域应用研究[J]. 铁道学报, 2019, 41(3): 40-49. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201903007.htm

    XU Fei, LUO Shi-hui, DENG Zi-gang. Study on key technologies and whole speed range application of maglev rail transport[J]. Journal of the China Railway Society, 2019, 41(3): 40-49. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201903007.htm
    [5] ZHOU Dan-feng, HANSEN C H, LI Jie, et al. Review of coupled vibration problems in EMS maglev vehicles[J]. International Journal of Acoustics and Vibration, 2010, 15(1): 10-23.
    [6] SUN You-gang, XU Jun-qi, QIANG Hai-yan, et al. Hopf bifurcation analysis of maglev vehicle-guideway interaction vibration system and stability control based on fuzzy adaptive theory[J]. Computers in Industry, 2019, 108: 197-209. doi: 10.1016/j.compind.2019.03.001
    [7] LI Jin-hui, LI Jie, ZHOU Dan-feng, et al. Self-excited vibration problems of maglev vehicle-bridge interaction system[J]. Journal of Central South University, 2014, 21(11): 4184-4192. doi: 10.1007/s11771-014-2414-5
    [8] YAU J D. Vibration control of maglev vehicles traveling over a flexible guideway[J]. Journal of Sound and Vibration, 2008, 321(1): 184-200.
    [9] WANG Hong-po, LI Jie, ZHANG Kun. Stability and Hopf bifurcation of the maglev system with delayed speed feedback control[J]. Acta Automatica Sinica, 2007, 33(8): 829-834. doi: 10.1360/aas-007-0829
    [10] ZHANG Ling-ling, HUANG Li-hong, ZHANG Zhi-zhou. Stability and Hopf bifurcation of the maglev system with delayed position and speed feedback control[J]. Nonlinear Dynamics, 2009, 57(1/2): 197-207.
    [11] CUI Yu-xi, SHEN Gang, WANG Hui. Maglev vehicle-guideway coupling vibration test rig based on the similarity theory[J]. Journal of Vibration and Control, 2016, 22(1): 286-295. doi: 10.1177/1077546314521446
    [12] 黎松奇, 张昆仑. 单磁铁悬浮系统自激振动的稳定性分析及抑制[J]. 西南交通大学学报, 2015, 50(3): 410-416. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201503004.htm

    LI Song-qi, ZHANG Kun-lun. Self-excited vibration of single-magnet suspension system: stability analysis and inhibition[J]. Journal of Southwest Jiaotong University, 2015, 50(3): 410-416. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201503004.htm
    [13] KIM K J, HAN J B, HAN H S, et al. Coupled vibration analysis of maglev vehicle-guideway while standing still or moving at low speeds[J]. Vehicle System Dynamics, 2015, 53(4): 587-601. doi: 10.1080/00423114.2015.1013039
    [14] 梁鑫, 罗世辉, 马卫华. 常导磁浮列车动态磁轨关系研究[J]. 铁道学报, 2013, 35(9): 39-45. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201309009.htm

    LIANG Xin, LUO Shi-hui, MA Wei-hua. Study on dynamic magnet-track relationship of maglev vehicles[J]. Journal of the China Railway Society, 2013, 35(9): 39-45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201309009.htm
    [15] WANG Dang-xiong, LI Xiao-zhen, LIANG Lin, et al. Influence of the track structure on the vertical dynamic interaction analysis of the low-to-medium-speed maglev train-bridge system[J]. Advances in Structural Engineering, 2019, 22(14): 2937-2950. doi: 10.1177/1369433219854550
    [16] WANG Dang-xiong, LI Xiao-zhen, WANG Yu-wen, et al. Dynamic interaction of the low-to-medium speed maglev train and bridges with different deflection ratios: experimental and numerical analyses[J]. Advances in Structural Engineering, 2020, 23(11): 2399-2413. doi: 10.1177/1369433220913367
    [17] LEE J S, KWON S D, KIM M Y, et al. A parametric study on the dynamics of urban transit maglev vehicle running on flexible guideway bridges[J]. Journal of Sound and Vibration, 2009, 328(3): 301-317. doi: 10.1016/j.jsv.2009.08.010
    [18] HAN H S, YIM B H, LEE N J, et al. Effects of the guideway's vibrational characteristics on the dynamics of a maglev vehicle[J]. Vehicle System Dynamics, 2009, 47(3): 309-324. doi: 10.1080/00423110802054342
    [19] KWON S D, LEE J S, MOON J W, et al. Dynamic interaction analysis of urban transit maglev vehicle and guideway suspension bridge subjected to gusty wind[J]. Engineering Structures, 2008, 30(12): 3445-3456. doi: 10.1016/j.engstruct.2008.05.003
    [20] 李小珍, 谢昆佑, 王党雄, 等. 中低速磁浮轨道-桥梁系统竖向振动传递特性研究[J]. 振动与冲击, 2019, 38(14): 105-111. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201914015.htm

    LI Xiao-zhen, XIE Kun-you, WANG Dang-xiong, et al. Vertical vibration transfer characteristics of medium-low speed maglev rail-bridge systems[J]. Journal of Vibration and Shock, 2019, 38(14): 105-111. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201914015.htm
    [21] LI Xiao-zhen, WANG Dang-xiong, LIU De-jun, et al. Dynamic analysis of the interactions between a low-to-medium-speed maglev train and a bridge: field test results of two typical bridges[J]. Journal of Rail and Rapid Transit, 2018, 232(7): 2039-2059. doi: 10.1177/0954409718758502
    [22] 耿杰, 王党雄, 李小珍, 等. 中低速磁浮列车-简支梁系统耦合振动试验研究[J]. 铁道学报, 2018, 40(2): 117-124. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201802018.htm

    GENG Jie, WANG Dang-xiong, LI Xiao-zhen, et al. Experimental study on coupled vibration of low-medium speed maglev train and simply supported girder system[J]. Journal of the China Railway Society, 2018, 40(2): 117-124. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201802018.htm
    [23] ZHANG Min, LUO Shi-hui, GAO Chang, et al. Research on the mechanism of a newly developed levitation frame with mid-set air spring[J]. Vehicle System Dynamics, 2018, 56(12): 1797-1816.
    [24] WANG Ke-ren, LUO Shi-hui, MA Wei-hua, et al. Dynamic characteristics analysis for a new-type maglev vehicle[J]. Advances in Mechanical Engineering, 2017, 9(12): 1-10.
    [25] 李小珍, 金鑫, 王党雄, 等. 长沙中低速磁浮运营线列车-桥梁系统耦合振动试验研究[J]. 振动与冲击, 2019, 38(13): 57-63. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201913010.htm

    LI Xiao-zhen, JIN Xin, WANG Dang-xiong, et al. Tests for coupled vibration of a train-bridge system on Changsha low-medium speed maglev line[J]. Journal of Vibration and Shock, 2019, 38(13): 57-63. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201913010.htm
    [26] ZHAO C F, ZHAI W M. Maglev vehicle/guideway vertical random response and ride quality[J]. Vehicle System Dynamics, 2002, 38(3): 185-210.
  • 加载中
图(19) / 表(1)
计量
  • 文章访问数:  891
  • HTML全文浏览量:  264
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-07
  • 刊出日期:  2022-02-25

目录

    /

    返回文章
    返回