Dynamic performance test of medium and low speed maglev vehicle-bridge coupled system
-
摘要: 为探究中低速磁浮车辆-桥梁耦合系统的振动特性,对其在上海临港中低速磁浮试验基地开展了现场动力学试验,研究了车速和桥梁结构形式对耦合系统动力响应的影响;试验车辆采用(悬挂)中置式悬浮架,试验桥梁为25 m混凝土简支梁和25 m钢结构简支梁;为明确2种桥梁的固有振动特性,对其进行了模态测试;提取了不同工况下车辆-桥梁耦合系统的加速度及桥梁的垂向动位移信号;计算了垂向和横向Sperling指标、动力系数、梁端转角等车辆-桥梁耦合系统关键动力指标,详细分析了耦合系统的动态响应特性,评估了系统的振动水平。研究结果表明:混凝土梁和钢梁的垂向一阶固有频率分别为7.32、7.72 Hz,2种桥梁的各项关键动力指标均满足相关标准要求;混凝土梁和钢梁的最大加速度分别不超过0.2、1.4 m·s-2;当车速为5 km·h-1时,钢梁的垂向动力响应幅值约为混凝土梁的7.6倍;在测试的速度范围内,车辆的横向Sperling指标均小于2.5,表明车辆在混凝土梁和钢梁上运行时均具有优秀的横向平稳性;车辆空气弹簧悬挂系统的垂向固有频率峰值在车速为25 km·h-1时达到最大,通过混凝土梁和钢梁的垂向Sperling指标分别达到2.687、3.340。测试结果可为中低速磁浮车辆-桥梁耦合系统的优化设计和数值模型验证等提供有价值的参考。Abstract: To investigate the vibration characteristics of medium and low speed maglev vehicle-bridge coupled system, field dynamics tests were carried out at Shanghai Lingang Medium and Low Speed Maglev Test Base, the effects of vehicle speed and structural form of the bridge on the dynamic response of the coupled system were studied. The levitation frames with mid-set suspension was adopt by the test vehicle, while the test bridges were 25 m simply-supported with concrete and steel structures. Modal tests were performed to clarify the natural vibration characteristics of the two bridges. The acceleration of the vehicle-bridge coupled system and the vertical dynamic displacement signals of the bridge under different operating conditions were extracted. The key dynamic indicators of the vehicle-bridge coupled system such as the vertical and lateral Sperling indexes, dynamic coefficients, and rotation angle of the beam end were calculated, the dynamic response characteristics of the coupled system were analyzed in detail, and the vibration level of the system was evaluated. Research results show that the vertical first-order natural frequencies of the concrete bridge and steel bridge are 7.32 and 7.72 Hz, respectively, and the key dynamic indicators of these two bridges meet the requirements of relevant standards. The maximum acceleration of the concrete bridge and steel bridge are less than 0.2 and 1.4 m·s-2, respectively. When the vehicle is operating at 5 km·h-1, the amplitude of vertical dynamic response of the steel bridge is approximately 7.6 times that of the concrete bridge. In the speed range tested, the lateral Sperling index of vehicle is less than 2.5, indicating excellent lateral operation stability when the vehicle is running on the concrete bridge and steel bridge. The peak of the vertical natural frequency of the vehicle's air-spring suspension system reaches its maximum when the vehicle speed is 25 km·h-1, and the vertical Sperling indexes reach 2.687 and 3.340 when the vehicle passes through the concrete bridge and steel bridge, respectively. The test results can provide valuable references for the optimal design and numerical model validation of medium and low speed maglev vehicle-bridge coupled system. 1 tab, 19 figs, 26 refs.
-
表 1 车辆主要技术参数
Table 1. Main technical parameters of vehicle
参数 数值 空气弹簧横向跨距/mm 1 930 直线电机长度/mm 2 980 悬浮电磁铁长度/mm 2 920 悬浮架总质量/t 15.72 整车质量/t 空载为31.5, 超载为39.0 -
[1] 翟婉明, 赵春发. 现代轨道交通工程科技前沿与挑战[J]. 西南交通大学学报, 2016, 51(2): 209-226. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201602002.htmZHAI Wan-ming, ZHAO Chun-fa. Frontiers and challenges of sciences and technologies in modern railway engineering[J]. Journal of Southwest Jiaotong University, 2016, 51(2): 209-226. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201602002.htm [2] YAN Lu-guang. Development and application of the maglev transportation system[J]. IEEE Transactions on Applied Superconductivity, 2008, 18(2): 92-99. doi: 10.1109/TASC.2008.922239 [3] LEE H, KIM K, LEE J, et al. Review of maglev train technologies[J]. IEEE Transactions on Magnetics, 2006, 42(7): 1917-1925. doi: 10.1109/TMAG.2006.875842 [4] 徐飞, 罗世辉, 邓自刚. 磁悬浮轨道交通关键技术及全速度域应用研究[J]. 铁道学报, 2019, 41(3): 40-49. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201903007.htmXU Fei, LUO Shi-hui, DENG Zi-gang. Study on key technologies and whole speed range application of maglev rail transport[J]. Journal of the China Railway Society, 2019, 41(3): 40-49. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201903007.htm [5] ZHOU Dan-feng, HANSEN C H, LI Jie, et al. Review of coupled vibration problems in EMS maglev vehicles[J]. International Journal of Acoustics and Vibration, 2010, 15(1): 10-23. [6] SUN You-gang, XU Jun-qi, QIANG Hai-yan, et al. Hopf bifurcation analysis of maglev vehicle-guideway interaction vibration system and stability control based on fuzzy adaptive theory[J]. Computers in Industry, 2019, 108: 197-209. doi: 10.1016/j.compind.2019.03.001 [7] LI Jin-hui, LI Jie, ZHOU Dan-feng, et al. Self-excited vibration problems of maglev vehicle-bridge interaction system[J]. Journal of Central South University, 2014, 21(11): 4184-4192. doi: 10.1007/s11771-014-2414-5 [8] YAU J D. Vibration control of maglev vehicles traveling over a flexible guideway[J]. Journal of Sound and Vibration, 2008, 321(1): 184-200. [9] WANG Hong-po, LI Jie, ZHANG Kun. Stability and Hopf bifurcation of the maglev system with delayed speed feedback control[J]. Acta Automatica Sinica, 2007, 33(8): 829-834. doi: 10.1360/aas-007-0829 [10] ZHANG Ling-ling, HUANG Li-hong, ZHANG Zhi-zhou. Stability and Hopf bifurcation of the maglev system with delayed position and speed feedback control[J]. Nonlinear Dynamics, 2009, 57(1/2): 197-207. [11] CUI Yu-xi, SHEN Gang, WANG Hui. Maglev vehicle-guideway coupling vibration test rig based on the similarity theory[J]. Journal of Vibration and Control, 2016, 22(1): 286-295. doi: 10.1177/1077546314521446 [12] 黎松奇, 张昆仑. 单磁铁悬浮系统自激振动的稳定性分析及抑制[J]. 西南交通大学学报, 2015, 50(3): 410-416. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201503004.htmLI Song-qi, ZHANG Kun-lun. Self-excited vibration of single-magnet suspension system: stability analysis and inhibition[J]. Journal of Southwest Jiaotong University, 2015, 50(3): 410-416. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201503004.htm [13] KIM K J, HAN J B, HAN H S, et al. Coupled vibration analysis of maglev vehicle-guideway while standing still or moving at low speeds[J]. Vehicle System Dynamics, 2015, 53(4): 587-601. doi: 10.1080/00423114.2015.1013039 [14] 梁鑫, 罗世辉, 马卫华. 常导磁浮列车动态磁轨关系研究[J]. 铁道学报, 2013, 35(9): 39-45. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201309009.htmLIANG Xin, LUO Shi-hui, MA Wei-hua. Study on dynamic magnet-track relationship of maglev vehicles[J]. Journal of the China Railway Society, 2013, 35(9): 39-45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201309009.htm [15] WANG Dang-xiong, LI Xiao-zhen, LIANG Lin, et al. Influence of the track structure on the vertical dynamic interaction analysis of the low-to-medium-speed maglev train-bridge system[J]. Advances in Structural Engineering, 2019, 22(14): 2937-2950. doi: 10.1177/1369433219854550 [16] WANG Dang-xiong, LI Xiao-zhen, WANG Yu-wen, et al. Dynamic interaction of the low-to-medium speed maglev train and bridges with different deflection ratios: experimental and numerical analyses[J]. Advances in Structural Engineering, 2020, 23(11): 2399-2413. doi: 10.1177/1369433220913367 [17] LEE J S, KWON S D, KIM M Y, et al. A parametric study on the dynamics of urban transit maglev vehicle running on flexible guideway bridges[J]. Journal of Sound and Vibration, 2009, 328(3): 301-317. doi: 10.1016/j.jsv.2009.08.010 [18] HAN H S, YIM B H, LEE N J, et al. Effects of the guideway's vibrational characteristics on the dynamics of a maglev vehicle[J]. Vehicle System Dynamics, 2009, 47(3): 309-324. doi: 10.1080/00423110802054342 [19] KWON S D, LEE J S, MOON J W, et al. Dynamic interaction analysis of urban transit maglev vehicle and guideway suspension bridge subjected to gusty wind[J]. Engineering Structures, 2008, 30(12): 3445-3456. doi: 10.1016/j.engstruct.2008.05.003 [20] 李小珍, 谢昆佑, 王党雄, 等. 中低速磁浮轨道-桥梁系统竖向振动传递特性研究[J]. 振动与冲击, 2019, 38(14): 105-111. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201914015.htmLI Xiao-zhen, XIE Kun-you, WANG Dang-xiong, et al. Vertical vibration transfer characteristics of medium-low speed maglev rail-bridge systems[J]. Journal of Vibration and Shock, 2019, 38(14): 105-111. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201914015.htm [21] LI Xiao-zhen, WANG Dang-xiong, LIU De-jun, et al. Dynamic analysis of the interactions between a low-to-medium-speed maglev train and a bridge: field test results of two typical bridges[J]. Journal of Rail and Rapid Transit, 2018, 232(7): 2039-2059. doi: 10.1177/0954409718758502 [22] 耿杰, 王党雄, 李小珍, 等. 中低速磁浮列车-简支梁系统耦合振动试验研究[J]. 铁道学报, 2018, 40(2): 117-124. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201802018.htmGENG Jie, WANG Dang-xiong, LI Xiao-zhen, et al. Experimental study on coupled vibration of low-medium speed maglev train and simply supported girder system[J]. Journal of the China Railway Society, 2018, 40(2): 117-124. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201802018.htm [23] ZHANG Min, LUO Shi-hui, GAO Chang, et al. Research on the mechanism of a newly developed levitation frame with mid-set air spring[J]. Vehicle System Dynamics, 2018, 56(12): 1797-1816. [24] WANG Ke-ren, LUO Shi-hui, MA Wei-hua, et al. Dynamic characteristics analysis for a new-type maglev vehicle[J]. Advances in Mechanical Engineering, 2017, 9(12): 1-10. [25] 李小珍, 金鑫, 王党雄, 等. 长沙中低速磁浮运营线列车-桥梁系统耦合振动试验研究[J]. 振动与冲击, 2019, 38(13): 57-63. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201913010.htmLI Xiao-zhen, JIN Xin, WANG Dang-xiong, et al. Tests for coupled vibration of a train-bridge system on Changsha low-medium speed maglev line[J]. Journal of Vibration and Shock, 2019, 38(13): 57-63. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201913010.htm [26] ZHAO C F, ZHAI W M. Maglev vehicle/guideway vertical random response and ride quality[J]. Vehicle System Dynamics, 2002, 38(3): 185-210.