-
摘要: 为探究高强钢(HSS)-超高性能混凝土(UHPC)组合梁的抗弯性能,考虑剪力连接度影响,设计并完成3片设置开孔板连接件的HSS-UHPC组合梁跨中两点对称加载试验;对剪力连接度分别为1.02、0.89和0.76的HSS-UHPC组合梁抗弯刚度、挠度、界面滑移、应变分布规律及钢梁与UHPC板的整体工作性能等进行分析,探讨了该型结构的受弯破坏机理;通过建立HSS-UHPC组合梁的ABAQUS非线性有限元计算模型,分析了混凝土强度、翼板厚度、钢材强度三者间的匹配关系,评估了现有简化塑性理论对该型组合梁抗弯计算的适用性。研究结果表明:设置开孔板连接件的HSS-UHPC组合梁具有较高的抗弯承载能力和良好的塑性变形能力,其抗弯刚度和延性均能满足工程使用要求;UHPC板与HSS梁在弹性受力阶段的界面滑移发展缓慢,最大滑移出现在1/8梁长附近;进入塑性受力阶段,界面滑移迅速增大,且最大滑移断面逐渐外移至梁端;剪力连接度对HSS-UHPC组合梁的抗弯性能影响显著,连接度由1.02分别减小至0.89和0.76时,结构的早期抗弯刚度分别降低了7.0%和8.7%,极限承载力也分别减小了9.2%和14.6%,界面最大滑移则分别增大了15.8%和17.0%;对比试验研究、数值模拟和理论计算结果三者吻合良好,数值结果显示采用Q690取代Q460的组合梁抗弯承载力提高了29.0%,但延性下降了39.7%;提高UHPC强度和增大混凝土翼板厚度均能显著改善HSS-UHPC组合梁延性并增强其抗弯承载力。Abstract: Considering the influence of different shear connection degrees, the mid-span two-point symmetrical loading tests for three pieces of high strength steel (HSS)-ultra-high performance concrete (UHPC) composite beams using perfobond strip (PBL) connectors were conducted to evaluate the flexural performance of HSS-UHPC composite beams. The properties including flexural rigidity, deflection, interfacial slip, and strain distribution laws of HSS-UHPC composite beams were analyzed under the shear connection degree of 1.02, 0.89, and 0.76, and the overall performance of steel beams and UHPC plates was discussed. In addition, the failure mechanisms of the beams subjected to bending moments were analyzed. On the basis of the ABAQUS nonlinear finite element numerical models for the HSS-UHPC composite beams, the matching relationships among concrete strength, plate thickness, and steel strength were investigated, and the feasibility of existing simplified plasticity theory in calculating the flexural performance of the HSS-UHPC composite beams was evaluated. Research results indicate that the HSS-UHPC composite beams using PBL connectors have the favorable flexural capacity and large plastic deformability, and their flexural rigidity and ductility are qualified for engineering applications. For the composite beams in the elastic stage, the relative interfacial slip between UHPC and HSS develops slowly, and the maximum slip occurs near the 1/8 of the beam. In the plastic stage, the interfacial slip rises rapidly, and the maximum slip section gradually moves to the beam ends. The flexural performance of HSS-UHPC composite beams is significantly affected by the shear connection degree. When the connection degree decrease from 1.02 to 0.89 and 0.76, the initial flexural rigidity of the composite beams lowers by 7.0% and 8.7%, respectively, and the corresponding ultimate bearing capacity decreases 9.2% and 14.6%, but the maximum slip grows by 15.8% and 17.0%, respectively. Good agreement is found among the numerical, experimental, and theoretical results. Numerical result demonstrates that after the replacement of Q460 steel with Q690 steel for the composite beams, the flexural capacity sees an increase of 29.0%, but the ductility decreases by 39.7%. The ductility and flexural capacity of the HSS-UHPC composite beams can be improved by higher UHPC strength and thicker concrete plates.
-
表 1 试件基本参数
Table 1. Basic parameters of test specimens
试件编号 UHPC板参数/mm HSS梁参数/mm PBL参数/mm 剪力连接度 宽度 厚度 翼缘板宽度 翼缘板厚度 钢腹板高度 钢腹板厚度 孔径 开孔板厚度 钢筋直径 间距 T8-D150 450 80 80 8 124 8 30 8 10 150 1.02 T8-D170 170 0.89 T8-D200 200 0.76 表 2 UHPC配合比
Table 2. Mix proportion of UHPC
组分 52.5水泥 硅灰 石灰粉 石灰砂 减水剂 质量比 1.00 0.25 0.10 1.10 0.03 表 3 UHPC力学性能
Table 3. Mechanical properties of UHPC
强度等级 立方体抗压强度/MPa 棱柱体抗压强度/MPa 抗折强度/MPa 抗拉强度/MPa 弹性模量/GPa RPC120 124 104 24 7.1 44.2 表 4 钢材力学性能
Table 4. Mechanical properties of steel
类别 屈服强度/MPa 抗拉强度/MPa 弹性模量/GPa Q460钢板 523 704 206 HRB400钢筋 498 581 200 表 5 主要试验结果
Table 5. Summary of test results
试件编号 KST/(kN·m-1) McrT/(kN·m) MyT/(kN·m) MuT/(kN·m) δyT/mm δuT/mm $\frac{M_\mathrm{u}^{\mathrm{T}}}{M_{\mathrm{y}}^{\mathrm{T}}} $ $ \frac{\delta_{\mathrm{u}}^{\mathrm{T}}}{\delta_{\mathrm{y}}^{\mathrm{T}}}$ T8-D150 12 086 77.7 111.2 165.6 12.87 81.17 1.49 6.31 T8-D170 11 240 73.1 89.7 150.3 11.69 79.86 1.68 6.83 T8-D200 11 033 60.1 77.3 141.4 9.73 77.54 1.83 7.97 表 6 UHPC塑性破坏准则参数
Table 6. Plastic collapse criteria parameters of UHPC
膨胀角/(°) 偏心率 强度比 Kc 黏聚系数 30 0.1 1.16 0.666 7 0.000 5 表 7 有限元模拟结果
Table 7. Finite element simulation results
试件编号 KsF/(kN·m-1) MyF/(kN·m) MuF/(kN·m) $\frac{M_{\mathrm{y}}^{\mathrm{T}}}{M_{\mathrm{y}}^{\mathrm{F}}} $ $\frac{M_{\mathrm{u}}^{\mathrm{T}}}{M_{\mathrm{u}}^{\mathrm{F}}} $ $\frac{{K_{\rm{S}}^{\rm{T}}}}{{K_{\rm{S}}^{\rm{F}}}} $ T8-D150 11 627 97.1 162.3 1.14 1.02 1.04 T8-D170 11 490 95.5 152.8 0.94 0.98 0.98 T8-D200 11 386 89.3 145.5 0.87 0.97 0.97 表 8 数值结果汇总
Table 8. Summary of numerical results
试件编号 fcu /MPa fy/MPa Tc/mm KsF/(kN·m-1) MyF/(kN·m) MuF/(kN·m) $\frac{M_{\mathrm{y}}^{\mathrm{F}}}{M_{\mathrm{u}}^{\mathrm{F}}} $ δyF/mm δuF/mm $ \frac{\delta_{\mathrm{u}}^{\mathrm{F}}}{\delta_{\mathrm{y}}^{\mathrm{F}}}$ MuE/(kN·m) $ \frac{M_{\mathrm{u}}^{\mathrm{F}}}{M_{\mathrm{u}}^{\mathrm{E}}}$ T8-D150-Q460 124 460 80 11 627 87.8 147.4 0.60 10.14 87.36 8.62 136.5 1.08 T8-D150-Q500 500 11 627 97.0 156.7 0.62 11.27 85.90 7.62 146.4 1.07 T8-D150-S523 523 11 627 97.1 162.3 0.60 11.27 84.56 7.50 165.6 0.98 T8-D150-Q550 550 11 627 106.2 166.7 0.64 12.39 84.51 6.82 158.5 1.05 T8-D150-Q620 620 11 627 115.1 178.9 0.64 13.53 83.28 6.16 174.5 1.03 T8-D150-Q690 690 11 627 132.4 190.2 0.70 15.76 82.01 5.20 189.5 1.00 T8-D150-RPC100 100 523 80 11 390 94.8 154.8 0.61 11.26 79.80 7.09 145.6 1.06 T8-D150-RPC140 140 11 778 98.8 168.3 0.59 11.27 96.61 8.57 155.2 1.08 T8-D150-RPC160 160 11 803 100.1 172.9 0.58 11.27 114.67 10.17 157.9 1.09 T8-D150-RPC180 180 11 890 100.5 176.3 0.57 11.28 130.23 11.54 160.2 1.10 T10-D150 124 523 100 14 746 120.0 190.7 0.63 11.27 77.45 6.87 175.8 1.08 T12-D150 120 18 741 134.2 223.7 0.60 10.14 72.50 7.15 199.6 1.12 T14-D150 140 24 043 165.1 262.5 0.63 10.14 66.49 6.56 223.3 1.18 T16-D150 160 30 151 180.2 301.7 0.60 9.00 63.95 7.11 247.1 1.22 参数均值 1.08 表 9 承载力理论值与试验值比较
Table 9. Comparison between theoretical and tested values of bearing capacities
试件编号 MuE/(kN·m) MuT/(kN·m) MuT/MuE T8-D150 165.6 165.6 1.00 T8-D170 147.5 150.3 1.02 T8-D200 134.0 141.4 1.05 参数均值 1.02 -
[1] XIAO Jing-lin, GUO Li-xian, NIE Jian-guo, et al. Flexural behavior of wet joints in steel-UHPC composite deck slabs under hogging moment[J]. Engineering Structures, 2022, 252: 113636. doi: 10.1016/j.engstruct.2021.113636 [2] WANG Yu-hang, YU Jie, LIU Jie-peng, et al. Experimental study on assembled monolithic steel-concrete composite beam in positive moment[J]. Engineering Structures, 2019, 180: 494-509. doi: 10.1016/j.engstruct.2018.11.034 [3] HAN Chun-xiu, ZHANG Jiu-chang, ZHOU Dong-hua, et al. Computing creep secondary internal forces in continuous steel-concrete composite beam constructed through segmented pouring[J]. Journal of Structural Engineering, 2020, 146(3): 04020003. doi: 10.1061/(ASCE)ST.1943-541X.0002494 [4] 陈宝春, 季韬, 黄卿维, 等. 超高性能混凝土研究综述[J]. 建筑科学与工程学报, 2014, 31(3): 1-24. doi: 10.3969/j.issn.1673-2049.2014.03.002CHEN Bao-chun, JI Tao, HUANG Qing-wei, et al. Review of research on ultra-high performance concrete[J]. Journal of Architecture and Civil Engineering, 2014, 31(3): 1-24. (in Chinese) doi: 10.3969/j.issn.1673-2049.2014.03.002 [5] JUN S C, LEE C H, HAN K H, et al. Flexural behavior of high-strength steel hybrid composite beams[J]. Journal of Constructional Steel Research, 2018, 149: 269-281. doi: 10.1016/j.jcsr.2018.07.020 [6] HE Shao-hua, LI Quan-feng, YANG Gang, et al. Experimental study on flexural performance of HSS-UHPC composite beams with perfobond strip connectors[J]. Journal of Structural Engineering, 2022, 148(6): 04022064. doi: 10.1061/(ASCE)ST.1943-541X.0003366 [7] HE Shao-hua, YANG Gang, ZHOU Wen-jie, et al. Evaluation of shear lag effect in HSS-UHPC composite beams with perfobond strip connectors: experimental and numerical studies[J]. Journal of Constructional Steel Research, 2022, 194: 107312. doi: 10.1016/j.jcsr.2022.107312 [8] ZHANG Yang, CAI Shu-kun, ZHU Yan-ping, et al. Flexural responses of steel-UHPC composite beams under hogging moment[J]. Engineering Structures, 2020, 206: 110134. doi: 10.1016/j.engstruct.2019.110134 [9] 付果. 考虑界面滑移及掀起影响的钢-混凝土组合梁试验与理论研究[D]. 西安: 西安建筑科技大学, 2008.FU Guo. Experiments and theoretic research on steel-concrete composite beams considering interface slip and uplift[D]. Xi'an: Xi'an University of Architecture and Technology, 2008. (in Chinese) [10] 张彦玲, 王元清, 季文玉. 钢-活性粉末混凝土简支组合梁正截面破坏模式[J]. 铁道科学与工程学报, 2009, 6(1): 10-15. doi: 10.3969/j.issn.1672-7029.2009.01.003ZHANG Yan-ling, WANG Yuan-qing, JI Wen-yu. Normal section failure mode of simple-supported steel-reactive powder concrete composite beams[J]. Journal of Railway Science and Engineering, 2009, 6(1): 10-15. (in Chinese) doi: 10.3969/j.issn.1672-7029.2009.01.003 [11] 张彦玲, 阎贵平, 安明喆, 等. 钢-活性粉末混凝土组合梁的极限承载力[J]. 北京交通大学学报, 2009, 33(1): 81-85. doi: 10.3969/j.issn.1673-0291.2009.01.019ZHANG Yan-ling, YAN Gui-ping, AN Ming-zhe, et al. Ultimate bearing capacity of steel-reactive powder concrete composite beams[J]. Journal of Beijing Jiaotong University, 2009, 33(1): 81-85. (in Chinese) doi: 10.3969/j.issn.1673-0291.2009.01.019 [12] 邵旭东, 邱明红. 基于UHPC材料的高性能装配式桥梁结构研发[J]. 西安建筑科技大学学报(自然科学版), 2019, 51(2): 160-167. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJZ201902002.htmSHAO Xu-dong, QIU Ming-hong. Research of high performance fabricated bridge structures based on UHPC[J]. Journal of Xi'an University of Architecture and Technology (Natural Science Edition), 2019, 51(2): 160-167. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAJZ201902002.htm [13] 邵旭东, 曹君辉. 面向未来的高性能桥梁结构研发与应用[J]. 建筑科学与工程学报, 2017, 34(5): 41-58. doi: 10.3969/j.issn.1673-2049.2017.05.005SHAO Xu-dong, CAO Jun-hui. Research and application of high performance bridge structures toward future[J]. Journal of Architecture and Civil Engineering, 2017, 34(5): 41-58. (in Chinese) doi: 10.3969/j.issn.1673-2049.2017.05.005 [14] 朱经纬, 辛公锋, 徐传昶, 等. 基于塑性损伤模型的钢-UHPC组合梁抗弯性能分析[J]. 钢结构(中英文), 2020, 35(8): 24-32. https://www.cnki.com.cn/Article/CJFDTOTAL-GJIG202008003.htmZHU Jing-wei, XIN Gong-feng, XU Chuan-chang, et al. Analysis of flexural behavior of steel-UHPC composite girders based on plastic damage model[J]. Steel Construction (Chinese and English), 2020, 35(8): 24-32. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GJIG202008003.htm [15] 张清华, 韩少辉, 贾东林, 等. 新型装配式UHPC华夫型上翼缘组合梁受力性能[J]. 西南交通大学学报, 2019, 54(3): 445-452.ZHANG Qing-hua, HAN Shao-hui, JIA Dong-lin, et al. Mechanical performance of novel prefabricated composite girder with top flange of ultra hight performance concrete waffle deck panel[J]. Journal of Southwest Jiaotong University, 2019, 54(3): 445-452. (in Chinese) [16] 卜一之, 刘欣益, 张清华. 基于截面应力法的钢-UHPC组合板初裂荷载计算方法研究[J]. 工程力学, 2020, 37(10): 209-217. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202010020.htmBU Yi-zhi, LIU Xin-yi, ZHANG Qing-hua. Cracking load calculation for steel-UHPC composite slabs based on the section-stress method[J]. Engineering Mechanics, 2020, 37(10): 209-217. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202010020.htm [17] 刘君平, 徐帅, 陈宝春. 钢-UHPC组合梁与钢-普通混凝土组合梁抗弯性能对比试验研究[J]. 工程力学, 2018, 35(11): 92-98, 145. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201811011.htmLIU Jun-ping, XU Shuai, CHEN Bao-chun. Experimental study on flexural behaviors of steel-UHPC composite girder and steel-conventional concrete composite girder[J]. Engineering Mechanics, 2018, 35(11): 92-98, 145. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201811011.htm [18] KRUSZEWSKI D, ZAGHI A E. Load transfer between thin steel plates and ultra-high performance concrete through different types of shear connectors[J]. Engineering Structures, 2021, 227: 111450. [19] EI-ZONHAIRY A, ALSHARARI F, SALIM H, et al. Fatigued composite beam with different shear connection arrangement[C]// ASCE. Structures Congress 2020. New York: ASCE, 2020: 130-136. [20] 张建东, 顾建成, 邓文琴, 等. 装配式组合梁桥开孔钢板连接件抗剪性能[J]. 中国公路学报, 2018, 31(12): 71-80. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201812007.htmZHANG Jian-dong, GU Jian-cheng, DENG Wen-qin, et al. Shear behavior of perfobond rib shear connectors for pre-fabricated composite bridges[J]. China Journal of Highway and Transport, 2018, 31(12): 71-80. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201812007.htm [21] 徐宙元, 赵人达, 牟廷敏. 带开孔钢板剪力连接件的钢-混凝土组合桥面板受力性能试验研究[J]. 建筑结构学报, 2015, 36(S1): 382-388. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB2015S1059.htmXU Zhou-yuan, ZHAO Ren-da, MOU Ting-min. Experimental study on mechanical behavior of steel-concrete composite bridge deck with PBL connectors[J]. Journal of Building Structures, 2015, 36(S1): 382-388. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB2015S1059.htm [22] 贺绍华, 方志, 张龙, 等. 混合梁钢-混结合段PBL剪力键的受力性能研究[J]. 铁道学报, 2015, 37(10): 100-109. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201510017.htmHE Shao-hua, FANG Zhi, ZHANG Long, et al. Research on mechanical performance of PBL shear connectors for steel- concrete joint section of hybrid girder bridge[J]. Journal of the China Railway Society, 2015, 37(10): 100-109. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201510017.htm [23] 吕伟荣, 朱峰, 卢倍嵘, 等. 风机基础开孔板连接件剪切受力机理试验研究[J]. 工程力学, 2018, 35(7): 127-138. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201807015.htmLYU Wei-rong, ZHU Feng, LU Bei-rong, et al. Experimental study on shear mechanism of perfobond connectors in wind turbines foundation[J]. Engineering Mechanics, 2018, 35(7): 127-138. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201807015.htm [24] HE Jun, LIU Yu-qing, ZHAO Chen, et al. Mechanical behavior of composite girder with perfobond shear connector under hogging moment[J]. Advanced Materials Research, 2012, 446-449: 1046-1053. [25] 聂建国, 吕国斌, 曹冬才, 等. 钢-混凝土组合梁变形计算的一般公式[J]. 哈尔滨建筑工程学院学报, 1993(增): 243-247. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBJ1993S1014.htmNIE Jian-guo, LYU Guo-bin, CAO Dong-cai, et al. General formula predicting the deflection of composite steel-concrete beams[J]. Journal of Harbin University of Civil Engineering and Architecture, 1993(S): 243-247. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBJ1993S1014.htm [26] HE Shao-hua, FANG Zhi, MOSALLAM A. Push-out tests for perfobond strip connectors with UHPC grout in the joints of steel-concrete hybrid bridge girders[J]. Engineering Structures, 2017, 135: 177-190. [27] 冉嵬, 王景全, 刘钊. 体外预应力钢-混凝土组合梁抗弯承载能力计算公式及试验研究[J]. 现代交通技术, 2005(5): 24-27. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJZ200505008.htmRAN Wei, WANG Jing-quan, LIU Zhao. Calculation formula and experimental study of flexural bearing capacity of externally prestressed steel-concrete composite beams[J]. Modern Transportation Technology, 2005(5): 24-27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTJZ200505008.htm [28] 党像梁, 吕西林, 钱江, 等. 底部开水平缝预应力自复位剪力墙有限元模拟[J]. 工程力学, 2017, 34(6): 51-63. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201706008.htmDANG Xiang-liang, LYU Xi-lin, QIAN Jiang, et al. Finite element simulation of self-centering pre-stressed shear walls with horizontal bottom slits[J]. Engineering Mechanics, 2017, 34(6): 51-63. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201706008.htm [29] MARK P, BENDER M. Computational modeling of failure mechanisms in reinforced concrete structures[J]. Facta Universitatis—Series: Architecture and Civil Engineering, 2010, 8(1): 1-12.