留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带开孔板连接件的HSS-UHPC组合梁抗弯性能

贺绍华 杨刚 房腾鹏 杨家粮

贺绍华, 杨刚, 房腾鹏, 杨家粮. 带开孔板连接件的HSS-UHPC组合梁抗弯性能[J]. 交通运输工程学报, 2022, 22(6): 143-157. doi: 10.19818/j.cnki.1671-1637.2022.06.009
引用本文: 贺绍华, 杨刚, 房腾鹏, 杨家粮. 带开孔板连接件的HSS-UHPC组合梁抗弯性能[J]. 交通运输工程学报, 2022, 22(6): 143-157. doi: 10.19818/j.cnki.1671-1637.2022.06.009
HE Shao-hua, YANG Gang, FANG Teng-peng, YANG Jia-liang. Flexural performance of HSS-UHPC composite beams with perfobond strip connectors[J]. Journal of Traffic and Transportation Engineering, 2022, 22(6): 143-157. doi: 10.19818/j.cnki.1671-1637.2022.06.009
Citation: HE Shao-hua, YANG Gang, FANG Teng-peng, YANG Jia-liang. Flexural performance of HSS-UHPC composite beams with perfobond strip connectors[J]. Journal of Traffic and Transportation Engineering, 2022, 22(6): 143-157. doi: 10.19818/j.cnki.1671-1637.2022.06.009

带开孔板连接件的HSS-UHPC组合梁抗弯性能

doi: 10.19818/j.cnki.1671-1637.2022.06.009
基金项目: 

国家自然科学基金项目 51908138

国家自然科学基金项目 52278161

广东省自然科学基金项目 2020A1515011355

详细信息
    作者简介:

    贺绍华(1989-),男,湖南南县人,广东工业大学副教授,工学博士,从事基于高性能材料的组合桥梁研究

  • 中图分类号: U448.216

Flexural performance of HSS-UHPC composite beams with perfobond strip connectors

Funds: 

National Natural Science Foundation of China 51908138

National Natural Science Foundation of China 52278161

Natural Science Foundation of Guangdong Province 2020A1515011355

More Information
    Author Bio:

    HE Shao-hua(1989-), male, associate professor, PhD, hesh@gdut.edu.cn

  • 摘要: 为探究高强钢(HSS)-超高性能混凝土(UHPC)组合梁的抗弯性能,考虑剪力连接度影响,设计并完成3片设置开孔板连接件的HSS-UHPC组合梁跨中两点对称加载试验;对剪力连接度分别为1.02、0.89和0.76的HSS-UHPC组合梁抗弯刚度、挠度、界面滑移、应变分布规律及钢梁与UHPC板的整体工作性能等进行分析,探讨了该型结构的受弯破坏机理;通过建立HSS-UHPC组合梁的ABAQUS非线性有限元计算模型,分析了混凝土强度、翼板厚度、钢材强度三者间的匹配关系,评估了现有简化塑性理论对该型组合梁抗弯计算的适用性。研究结果表明:设置开孔板连接件的HSS-UHPC组合梁具有较高的抗弯承载能力和良好的塑性变形能力,其抗弯刚度和延性均能满足工程使用要求;UHPC板与HSS梁在弹性受力阶段的界面滑移发展缓慢,最大滑移出现在1/8梁长附近;进入塑性受力阶段,界面滑移迅速增大,且最大滑移断面逐渐外移至梁端;剪力连接度对HSS-UHPC组合梁的抗弯性能影响显著,连接度由1.02分别减小至0.89和0.76时,结构的早期抗弯刚度分别降低了7.0%和8.7%,极限承载力也分别减小了9.2%和14.6%,界面最大滑移则分别增大了15.8%和17.0%;对比试验研究、数值模拟和理论计算结果三者吻合良好,数值结果显示采用Q690取代Q460的组合梁抗弯承载力提高了29.0%,但延性下降了39.7%;提高UHPC强度和增大混凝土翼板厚度均能显著改善HSS-UHPC组合梁延性并增强其抗弯承载力。

     

  • 图  1  HSS-UHPC组合梁构造

    Figure  1.  Structure of HSS-UHPC composite beam

    图  2  组合梁试件几何尺寸与构造(单位:mm)

    Figure  2.  Configurations and dimensions of test specimens (unit: mm)

    图  3  加载装置

    Figure  3.  Loading setup

    图  4  测点布置(单位:mm)

    Figure  4.  Layout of measuring points (unit: mm)

    图  5  HSS-UHPC组合梁破坏形态

    Figure  5.  Failure modes of HSS-UHPC composite beams

    图  6  跨中弯矩-挠度曲线

    Figure  6.  Moment-deflection curves at middle-spans

    图  7  跨中截面应变分布

    Figure  7.  Strain distributions on midspan cross sections

    图  8  PBL应变分布

    Figure  8.  Strain distributions of PBL

    图  9  梁端-荷载滑移曲线

    Figure  9.  Load-slip curves at beam end

    图  10  极限状态下界面滑移分布

    Figure  10.  Slip distribution at ultimate state

    图  11  UHPC受压本构模型

    Figure  11.  UHPC compression constitutive model

    图  12  UHPC受拉本构模型

    Figure  12.  UHPC tensile constitutive model

    图  13  钢材本构模型

    Figure  13.  Constitutive model of steel

    图  14  高强钢-UHPC组合梁有限元模型

    Figure  14.  FE model of HSS-UHPC composite beams

    图  15  试件破坏形态

    Figure  15.  Failure patterns of test beams

    图  16  弯矩-挠度曲线

    Figure  16.  Moment-deflection curves

    图  17  不同钢材强度弯矩-挠度曲线

    Figure  17.  Moment-deflection curves with different steel strengths

    图  18  不同钢材强度混凝土板破坏形态

    Figure  18.  Failure patterns of concrete slab with different steel strengths

    图  19  不同混凝土强度弯矩-挠度曲线

    Figure  19.  Moment-deflection curves with different concrete strengths

    图  20  不同混凝土强度钢梁应力云图

    Figure  20.  Stress nephograms of steel beam with different concrete strengths

    图  21  不同混凝土板厚度弯矩-挠度曲线

    Figure  21.  Moment-deflection curves with different concrete slab thicknesses

    图  22  不同混凝土板厚度钢梁应力云图

    Figure  22.  Stress nephograms of steel beam with different concrete slab thicknesses

    表  1  试件基本参数

    Table  1.   Basic parameters of test specimens

    试件编号 UHPC板参数/mm HSS梁参数/mm PBL参数/mm 剪力连接度
    宽度 厚度 翼缘板宽度 翼缘板厚度 钢腹板高度 钢腹板厚度 孔径 开孔板厚度 钢筋直径 间距
    T8-D150 450 80 80 8 124 8 30 8 10 150 1.02
    T8-D170 170 0.89
    T8-D200 200 0.76
    下载: 导出CSV

    表  2  UHPC配合比

    Table  2.   Mix proportion of UHPC

    组分 52.5水泥 硅灰 石灰粉 石灰砂 减水剂
    质量比 1.00 0.25 0.10 1.10 0.03
    下载: 导出CSV

    表  3  UHPC力学性能

    Table  3.   Mechanical properties of UHPC

    强度等级 立方体抗压强度/MPa 棱柱体抗压强度/MPa 抗折强度/MPa 抗拉强度/MPa 弹性模量/GPa
    RPC120 124 104 24 7.1 44.2
    下载: 导出CSV

    表  4  钢材力学性能

    Table  4.   Mechanical properties of steel

    类别 屈服强度/MPa 抗拉强度/MPa 弹性模量/GPa
    Q460钢板 523 704 206
    HRB400钢筋 498 581 200
    下载: 导出CSV

    表  5  主要试验结果

    Table  5.   Summary of test results

    试件编号 KST/(kN·m-1) McrT/(kN·m) MyT/(kN·m) MuT/(kN·m) δyT/mm δuT/mm $\frac{M_\mathrm{u}^{\mathrm{T}}}{M_{\mathrm{y}}^{\mathrm{T}}} $ $ \frac{\delta_{\mathrm{u}}^{\mathrm{T}}}{\delta_{\mathrm{y}}^{\mathrm{T}}}$
    T8-D150 12 086 77.7 111.2 165.6 12.87 81.17 1.49 6.31
    T8-D170 11 240 73.1 89.7 150.3 11.69 79.86 1.68 6.83
    T8-D200 11 033 60.1 77.3 141.4 9.73 77.54 1.83 7.97
    下载: 导出CSV

    表  6  UHPC塑性破坏准则参数

    Table  6.   Plastic collapse criteria parameters of UHPC

    膨胀角/(°) 偏心率 强度比 Kc 黏聚系数
    30 0.1 1.16 0.666 7 0.000 5
    下载: 导出CSV

    表  7  有限元模拟结果

    Table  7.   Finite element simulation results

    试件编号 KsF/(kN·m-1) MyF/(kN·m) MuF/(kN·m) $\frac{M_{\mathrm{y}}^{\mathrm{T}}}{M_{\mathrm{y}}^{\mathrm{F}}} $ $\frac{M_{\mathrm{u}}^{\mathrm{T}}}{M_{\mathrm{u}}^{\mathrm{F}}} $ $\frac{{K_{\rm{S}}^{\rm{T}}}}{{K_{\rm{S}}^{\rm{F}}}} $
    T8-D150 11 627 97.1 162.3 1.14 1.02 1.04
    T8-D170 11 490 95.5 152.8 0.94 0.98 0.98
    T8-D200 11 386 89.3 145.5 0.87 0.97 0.97
    下载: 导出CSV

    表  8  数值结果汇总

    Table  8.   Summary of numerical results

    试件编号 fcu /MPa fy/MPa Tc/mm KsF/(kN·m-1) MyF/(kN·m) MuF/(kN·m) $\frac{M_{\mathrm{y}}^{\mathrm{F}}}{M_{\mathrm{u}}^{\mathrm{F}}} $ δyF/mm δuF/mm $ \frac{\delta_{\mathrm{u}}^{\mathrm{F}}}{\delta_{\mathrm{y}}^{\mathrm{F}}}$ MuE/(kN·m) $ \frac{M_{\mathrm{u}}^{\mathrm{F}}}{M_{\mathrm{u}}^{\mathrm{E}}}$
    T8-D150-Q460 124 460 80 11 627 87.8 147.4 0.60 10.14 87.36 8.62 136.5 1.08
    T8-D150-Q500 500 11 627 97.0 156.7 0.62 11.27 85.90 7.62 146.4 1.07
    T8-D150-S523 523 11 627 97.1 162.3 0.60 11.27 84.56 7.50 165.6 0.98
    T8-D150-Q550 550 11 627 106.2 166.7 0.64 12.39 84.51 6.82 158.5 1.05
    T8-D150-Q620 620 11 627 115.1 178.9 0.64 13.53 83.28 6.16 174.5 1.03
    T8-D150-Q690 690 11 627 132.4 190.2 0.70 15.76 82.01 5.20 189.5 1.00
    T8-D150-RPC100 100 523 80 11 390 94.8 154.8 0.61 11.26 79.80 7.09 145.6 1.06
    T8-D150-RPC140 140 11 778 98.8 168.3 0.59 11.27 96.61 8.57 155.2 1.08
    T8-D150-RPC160 160 11 803 100.1 172.9 0.58 11.27 114.67 10.17 157.9 1.09
    T8-D150-RPC180 180 11 890 100.5 176.3 0.57 11.28 130.23 11.54 160.2 1.10
    T10-D150 124 523 100 14 746 120.0 190.7 0.63 11.27 77.45 6.87 175.8 1.08
    T12-D150 120 18 741 134.2 223.7 0.60 10.14 72.50 7.15 199.6 1.12
    T14-D150 140 24 043 165.1 262.5 0.63 10.14 66.49 6.56 223.3 1.18
    T16-D150 160 30 151 180.2 301.7 0.60 9.00 63.95 7.11 247.1 1.22
    参数均值 1.08
    下载: 导出CSV

    表  9  承载力理论值与试验值比较

    Table  9.   Comparison between theoretical and tested values of bearing capacities

    试件编号 MuE/(kN·m) MuT/(kN·m) MuT/MuE
    T8-D150 165.6 165.6 1.00
    T8-D170 147.5 150.3 1.02
    T8-D200 134.0 141.4 1.05
    参数均值 1.02
    下载: 导出CSV
  • [1] XIAO Jing-lin, GUO Li-xian, NIE Jian-guo, et al. Flexural behavior of wet joints in steel-UHPC composite deck slabs under hogging moment[J]. Engineering Structures, 2022, 252: 113636. doi: 10.1016/j.engstruct.2021.113636
    [2] WANG Yu-hang, YU Jie, LIU Jie-peng, et al. Experimental study on assembled monolithic steel-concrete composite beam in positive moment[J]. Engineering Structures, 2019, 180: 494-509. doi: 10.1016/j.engstruct.2018.11.034
    [3] HAN Chun-xiu, ZHANG Jiu-chang, ZHOU Dong-hua, et al. Computing creep secondary internal forces in continuous steel-concrete composite beam constructed through segmented pouring[J]. Journal of Structural Engineering, 2020, 146(3): 04020003. doi: 10.1061/(ASCE)ST.1943-541X.0002494
    [4] 陈宝春, 季韬, 黄卿维, 等. 超高性能混凝土研究综述[J]. 建筑科学与工程学报, 2014, 31(3): 1-24. doi: 10.3969/j.issn.1673-2049.2014.03.002

    CHEN Bao-chun, JI Tao, HUANG Qing-wei, et al. Review of research on ultra-high performance concrete[J]. Journal of Architecture and Civil Engineering, 2014, 31(3): 1-24. (in Chinese) doi: 10.3969/j.issn.1673-2049.2014.03.002
    [5] JUN S C, LEE C H, HAN K H, et al. Flexural behavior of high-strength steel hybrid composite beams[J]. Journal of Constructional Steel Research, 2018, 149: 269-281. doi: 10.1016/j.jcsr.2018.07.020
    [6] HE Shao-hua, LI Quan-feng, YANG Gang, et al. Experimental study on flexural performance of HSS-UHPC composite beams with perfobond strip connectors[J]. Journal of Structural Engineering, 2022, 148(6): 04022064. doi: 10.1061/(ASCE)ST.1943-541X.0003366
    [7] HE Shao-hua, YANG Gang, ZHOU Wen-jie, et al. Evaluation of shear lag effect in HSS-UHPC composite beams with perfobond strip connectors: experimental and numerical studies[J]. Journal of Constructional Steel Research, 2022, 194: 107312. doi: 10.1016/j.jcsr.2022.107312
    [8] ZHANG Yang, CAI Shu-kun, ZHU Yan-ping, et al. Flexural responses of steel-UHPC composite beams under hogging moment[J]. Engineering Structures, 2020, 206: 110134. doi: 10.1016/j.engstruct.2019.110134
    [9] 付果. 考虑界面滑移及掀起影响的钢-混凝土组合梁试验与理论研究[D]. 西安: 西安建筑科技大学, 2008.

    FU Guo. Experiments and theoretic research on steel-concrete composite beams considering interface slip and uplift[D]. Xi'an: Xi'an University of Architecture and Technology, 2008. (in Chinese)
    [10] 张彦玲, 王元清, 季文玉. 钢-活性粉末混凝土简支组合梁正截面破坏模式[J]. 铁道科学与工程学报, 2009, 6(1): 10-15. doi: 10.3969/j.issn.1672-7029.2009.01.003

    ZHANG Yan-ling, WANG Yuan-qing, JI Wen-yu. Normal section failure mode of simple-supported steel-reactive powder concrete composite beams[J]. Journal of Railway Science and Engineering, 2009, 6(1): 10-15. (in Chinese) doi: 10.3969/j.issn.1672-7029.2009.01.003
    [11] 张彦玲, 阎贵平, 安明喆, 等. 钢-活性粉末混凝土组合梁的极限承载力[J]. 北京交通大学学报, 2009, 33(1): 81-85. doi: 10.3969/j.issn.1673-0291.2009.01.019

    ZHANG Yan-ling, YAN Gui-ping, AN Ming-zhe, et al. Ultimate bearing capacity of steel-reactive powder concrete composite beams[J]. Journal of Beijing Jiaotong University, 2009, 33(1): 81-85. (in Chinese) doi: 10.3969/j.issn.1673-0291.2009.01.019
    [12] 邵旭东, 邱明红. 基于UHPC材料的高性能装配式桥梁结构研发[J]. 西安建筑科技大学学报(自然科学版), 2019, 51(2): 160-167. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJZ201902002.htm

    SHAO Xu-dong, QIU Ming-hong. Research of high performance fabricated bridge structures based on UHPC[J]. Journal of Xi'an University of Architecture and Technology (Natural Science Edition), 2019, 51(2): 160-167. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAJZ201902002.htm
    [13] 邵旭东, 曹君辉. 面向未来的高性能桥梁结构研发与应用[J]. 建筑科学与工程学报, 2017, 34(5): 41-58. doi: 10.3969/j.issn.1673-2049.2017.05.005

    SHAO Xu-dong, CAO Jun-hui. Research and application of high performance bridge structures toward future[J]. Journal of Architecture and Civil Engineering, 2017, 34(5): 41-58. (in Chinese) doi: 10.3969/j.issn.1673-2049.2017.05.005
    [14] 朱经纬, 辛公锋, 徐传昶, 等. 基于塑性损伤模型的钢-UHPC组合梁抗弯性能分析[J]. 钢结构(中英文), 2020, 35(8): 24-32. https://www.cnki.com.cn/Article/CJFDTOTAL-GJIG202008003.htm

    ZHU Jing-wei, XIN Gong-feng, XU Chuan-chang, et al. Analysis of flexural behavior of steel-UHPC composite girders based on plastic damage model[J]. Steel Construction (Chinese and English), 2020, 35(8): 24-32. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GJIG202008003.htm
    [15] 张清华, 韩少辉, 贾东林, 等. 新型装配式UHPC华夫型上翼缘组合梁受力性能[J]. 西南交通大学学报, 2019, 54(3): 445-452.

    ZHANG Qing-hua, HAN Shao-hui, JIA Dong-lin, et al. Mechanical performance of novel prefabricated composite girder with top flange of ultra hight performance concrete waffle deck panel[J]. Journal of Southwest Jiaotong University, 2019, 54(3): 445-452. (in Chinese)
    [16] 卜一之, 刘欣益, 张清华. 基于截面应力法的钢-UHPC组合板初裂荷载计算方法研究[J]. 工程力学, 2020, 37(10): 209-217. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202010020.htm

    BU Yi-zhi, LIU Xin-yi, ZHANG Qing-hua. Cracking load calculation for steel-UHPC composite slabs based on the section-stress method[J]. Engineering Mechanics, 2020, 37(10): 209-217. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202010020.htm
    [17] 刘君平, 徐帅, 陈宝春. 钢-UHPC组合梁与钢-普通混凝土组合梁抗弯性能对比试验研究[J]. 工程力学, 2018, 35(11): 92-98, 145. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201811011.htm

    LIU Jun-ping, XU Shuai, CHEN Bao-chun. Experimental study on flexural behaviors of steel-UHPC composite girder and steel-conventional concrete composite girder[J]. Engineering Mechanics, 2018, 35(11): 92-98, 145. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201811011.htm
    [18] KRUSZEWSKI D, ZAGHI A E. Load transfer between thin steel plates and ultra-high performance concrete through different types of shear connectors[J]. Engineering Structures, 2021, 227: 111450.
    [19] EI-ZONHAIRY A, ALSHARARI F, SALIM H, et al. Fatigued composite beam with different shear connection arrangement[C]// ASCE. Structures Congress 2020. New York: ASCE, 2020: 130-136.
    [20] 张建东, 顾建成, 邓文琴, 等. 装配式组合梁桥开孔钢板连接件抗剪性能[J]. 中国公路学报, 2018, 31(12): 71-80. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201812007.htm

    ZHANG Jian-dong, GU Jian-cheng, DENG Wen-qin, et al. Shear behavior of perfobond rib shear connectors for pre-fabricated composite bridges[J]. China Journal of Highway and Transport, 2018, 31(12): 71-80. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201812007.htm
    [21] 徐宙元, 赵人达, 牟廷敏. 带开孔钢板剪力连接件的钢-混凝土组合桥面板受力性能试验研究[J]. 建筑结构学报, 2015, 36(S1): 382-388. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB2015S1059.htm

    XU Zhou-yuan, ZHAO Ren-da, MOU Ting-min. Experimental study on mechanical behavior of steel-concrete composite bridge deck with PBL connectors[J]. Journal of Building Structures, 2015, 36(S1): 382-388. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB2015S1059.htm
    [22] 贺绍华, 方志, 张龙, 等. 混合梁钢-混结合段PBL剪力键的受力性能研究[J]. 铁道学报, 2015, 37(10): 100-109. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201510017.htm

    HE Shao-hua, FANG Zhi, ZHANG Long, et al. Research on mechanical performance of PBL shear connectors for steel- concrete joint section of hybrid girder bridge[J]. Journal of the China Railway Society, 2015, 37(10): 100-109. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201510017.htm
    [23] 吕伟荣, 朱峰, 卢倍嵘, 等. 风机基础开孔板连接件剪切受力机理试验研究[J]. 工程力学, 2018, 35(7): 127-138. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201807015.htm

    LYU Wei-rong, ZHU Feng, LU Bei-rong, et al. Experimental study on shear mechanism of perfobond connectors in wind turbines foundation[J]. Engineering Mechanics, 2018, 35(7): 127-138. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201807015.htm
    [24] HE Jun, LIU Yu-qing, ZHAO Chen, et al. Mechanical behavior of composite girder with perfobond shear connector under hogging moment[J]. Advanced Materials Research, 2012, 446-449: 1046-1053.
    [25] 聂建国, 吕国斌, 曹冬才, 等. 钢-混凝土组合梁变形计算的一般公式[J]. 哈尔滨建筑工程学院学报, 1993(增): 243-247. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBJ1993S1014.htm

    NIE Jian-guo, LYU Guo-bin, CAO Dong-cai, et al. General formula predicting the deflection of composite steel-concrete beams[J]. Journal of Harbin University of Civil Engineering and Architecture, 1993(S): 243-247. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBJ1993S1014.htm
    [26] HE Shao-hua, FANG Zhi, MOSALLAM A. Push-out tests for perfobond strip connectors with UHPC grout in the joints of steel-concrete hybrid bridge girders[J]. Engineering Structures, 2017, 135: 177-190.
    [27] 冉嵬, 王景全, 刘钊. 体外预应力钢-混凝土组合梁抗弯承载能力计算公式及试验研究[J]. 现代交通技术, 2005(5): 24-27. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJZ200505008.htm

    RAN Wei, WANG Jing-quan, LIU Zhao. Calculation formula and experimental study of flexural bearing capacity of externally prestressed steel-concrete composite beams[J]. Modern Transportation Technology, 2005(5): 24-27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTJZ200505008.htm
    [28] 党像梁, 吕西林, 钱江, 等. 底部开水平缝预应力自复位剪力墙有限元模拟[J]. 工程力学, 2017, 34(6): 51-63. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201706008.htm

    DANG Xiang-liang, LYU Xi-lin, QIAN Jiang, et al. Finite element simulation of self-centering pre-stressed shear walls with horizontal bottom slits[J]. Engineering Mechanics, 2017, 34(6): 51-63. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201706008.htm
    [29] MARK P, BENDER M. Computational modeling of failure mechanisms in reinforced concrete structures[J]. Facta Universitatis—Series: Architecture and Civil Engineering, 2010, 8(1): 1-12.
  • 加载中
图(22) / 表(9)
计量
  • 文章访问数:  584
  • HTML全文浏览量:  226
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-26
  • 网络出版日期:  2023-01-10
  • 刊出日期:  2022-12-25

目录

    /

    返回文章
    返回