留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

道岔护轨间隔和翼轨间隔限值合理性分析与优化

王璞 赵振华 葛晶 马俊琦 王树国 刘孝寒

王璞, 赵振华, 葛晶, 马俊琦, 王树国, 刘孝寒. 道岔护轨间隔和翼轨间隔限值合理性分析与优化[J]. 交通运输工程学报, 2024, 24(2): 102-111. doi: 10.19818/j.cnki.1671-1637.2024.02.006
引用本文: 王璞, 赵振华, 葛晶, 马俊琦, 王树国, 刘孝寒. 道岔护轨间隔和翼轨间隔限值合理性分析与优化[J]. 交通运输工程学报, 2024, 24(2): 102-111. doi: 10.19818/j.cnki.1671-1637.2024.02.006
WANG Pu, ZHAO Zhen-hua, GE Jing, MA Jun-qi, WANG Shu-guo, LIU Xiao-han. Rationality analysis and optimization of guard rail interval and wing rail interval limits at turnouts[J]. Journal of Traffic and Transportation Engineering, 2024, 24(2): 102-111. doi: 10.19818/j.cnki.1671-1637.2024.02.006
Citation: WANG Pu, ZHAO Zhen-hua, GE Jing, MA Jun-qi, WANG Shu-guo, LIU Xiao-han. Rationality analysis and optimization of guard rail interval and wing rail interval limits at turnouts[J]. Journal of Traffic and Transportation Engineering, 2024, 24(2): 102-111. doi: 10.19818/j.cnki.1671-1637.2024.02.006

道岔护轨间隔和翼轨间隔限值合理性分析与优化

doi: 10.19818/j.cnki.1671-1637.2024.02.006
基金项目: 

国家重点研发计划 2022YFB2603402

中国国家铁路集团有限公司科技研究开发计划 N2023G078

中国铁道科学研究院集团有限公司科研项目 2022YJ177

详细信息
    作者简介:

    王璞(1988-), 男, 河北省沧州人, 中国铁道科学研究院集团有限公司副研究员,工学博士,从事轨道工程研究

    通讯作者:

    王树国(1974-), 男, 山东省聊城人, 中国铁道科学研究院集团有限公司研究员, 工学博士

  • 中图分类号: U213.2

Rationality analysis and optimization of guard rail interval and wing rail interval limits at turnouts

Funds: 

National Key Research and Development Program of China 2022YFB2603402

Science and Technology Research and Development Project of China State Railway Group Co., Ltd. N2023G078

Scientific Research Project of China Academy of Railway Sciences Co., Ltd. 2022YJ177

More Information
  • 摘要: 针对近年来多次出现的普速铁路道岔护轨位置脱轨问题,研究了脱轨过程与机理,分析了目前护轨间隔、翼轨间隔限值与计算方法的合理性;在全国范围内选取19个车站、124组道岔开展了系统的现场试验研究,探讨了护轨间隔、翼轨间隔限值的优化方法。研究结果表明:道岔护轨位置脱轨的主要原因为车轮冲击护轨开口段导致护轨螺栓松动、护轨低头、顶部磨耗,最终造成车轮爬上护轨脱轨;现场养护维修中,护轨、翼轨间隔分布较离散,合格率较低,为68.97%~73.83%;目前的翼轨间隔限值安全裕量较大,可适当放松,为现场维修提供方便;与同号码复式交分道岔相比,单开道岔护轨开口段轮轨冲击概率略小;随着道岔号码的增大,护轨开口段冲击概率呈减小趋势;目前的护轨间隔限值设置可将车轮冲击直向护轨以及侧向护轨跟端开口段的概率控制在12%以内,但并不能有效防止侧向护轨趾端开口段的轮轨冲击,概率仍高达53.85%~75.00%;实际养护维修过程中,建议将护轨间隔限值修改为1 365 mm,可满足大部分主型道岔的需求,有效减少和避免护轨趾端开口段的轮轨冲击。

     

  • 图  1  护轨间隔、翼轨间隔

    Figure  1.  Guard rail interval and wing rail interval

    图  2  护轨间隔、翼轨间隔限值

    Figure  2.  limits of guard rail interval and wing rail interval

    图  3  复式交分道岔护轨位置脱轨

    Figure  3.  Derailment of double slip turnout at guard rail position

    图  4  车辆通过道岔时的运行姿态

    Figure  4.  Running attitudes of vehicle when passing a turnout

    图  5  测试道岔类型

    Figure  5.  Types of test turnouts

    图  6  现场测试

    Figure  6.  Field testing

    图  7  单开、对称道岔护轨/翼轨间隔分布

    Figure  7.  Interval distributions of guard rail and wing rail of simple and bilateral turnouts

    图  8  复式交分道岔护轨/翼轨间隔分布

    Figure  8.  Interval distributions of guard rail and wing rail of double slip turnout

    图  9  翼轨跟端磨耗起点间隔分布

    Figure  9.  Interval distributions of starting position of wear for wing rail heel end

    图  10  9号复式交分道岔护轨磨耗起点间隔分布

    Figure  10.  Interval distributions of starting position of wear for guard rail of No. 9 double slip turnout

    图  11  12号复式交分道岔护轨磨耗起点间隔分布

    Figure  11.  Interval distributions of starting position of wear for guard rail of No.12 double slip turnout

    图  12  6号对称道岔护轨磨耗起点间隔分布

    Figure  12.  Interval distributions of starting position of wear for guard rail of No.6 bilateral turnout

    图  13  9号单开道岔护轨磨耗起点间隔分布

    Figure  13.  Interval distributions of starting position of wear for guard rail of No.9 simple turnout

    图  14  12号单开道岔护轨磨耗起点间隔分布

    Figure  14.  Interval distributions of starting position of wear for guard rail of No.12 simple turnout

    表  1  道岔护轨间隔、翼轨间隔分布统计

    Table  1.   Distribution statistics of guard rail interval and wing rail interval of turnouts

    道岔类型 间隔类型 分布范围/mm 平均值/mm 标准差/mm 合格率/%
    单开/对称道岔 护轨间隔 1 363~1 377 1 369.3 2.625 73.83
    翼轨间隔 1 362~1 374 1 369.4 2.627 68.97
    复式交分道岔 护轨间隔 1 360~1 375 1 368.5 2.981 71.13
    翼轨间隔 1 365~1 376 1 370.1 2.391 69.05
    下载: 导出CSV

    表  2  复式交分道岔护轨磨耗起点间隔分布统计

    Table  2.   Interval distributions of starting position of wear for guard rail of double slip turnouts

    道岔类型 9号复式交分道岔 12号复式交分道岔
    趾端磨耗起点间隔/mm 1 355~1 382 1 364~1 378
    冲击趾端开口段概率/% 75.00 64.71
    跟端磨耗起点间隔/mm 1 367~1 386 1 369~1 382
    冲击跟端开口段概率/% 7.32 5.26
    下载: 导出CSV

    表  3  道岔护轨磨耗起点间隔分布统计

    Table  3.   Distributions statistics of interval corresponding to the starting position of wear for guard rail of turnouts

    道岔类型 6号对称 9号单开 12号单开
    趾端磨耗起点间隔/mm 1 364~1 374 1 364~1 374 1 366~1 376
    冲击趾端开口段概率/% 72.22 75.00 53.85
    跟端磨耗起点间隔/mm 1 370~1 387 1 372~1 381 1 376~1 386
    冲击跟端开口段概率/% 11.11 0 0
    下载: 导出CSV
  • [1] 龚凯, 向俊, 余翠英, 等. 曲线上货物列车超速引起的脱轨过程分析[J]. 东南大学学报(自然科学版), 2015, 45(1): 172-177. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201501031.htm

    GONG Kai, XIANG Jun, YU Cui-ying, et al. Analysis on freight train derailment course induced by overspeed in curve[J]. Journal of Southeast University (Natural Science Edition), 2015, 45(1): 172-177. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201501031.htm
    [2] 龚凯, 刘林芽, 向俊, 等. 客运列车曲线超速引起的脱轨全过程计算[J]. 中南大学学报(自然科学版), 2020, 51(9): 2673-2680. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202009033.htm

    GONG Kai, LIU Lin-ya, XIANG Jun, et al. Calculation of passenger train derailment course induced by overspeeds in curve[J]. Journal of Central South University (Science and Technology), 2020, 51(9): 2673-2680. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202009033.htm
    [3] 司道林, 王树国, 王猛, 等. 6号对称道岔脱轨机理及影响因素[J]. 西南交通大学学报, 2021, 56(2): 300-305. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202102011.htm

    SI Dao-lin, WANG Shu-guo, WANG Meng, et al. Derailment mechanism and influence factors on number 6 symmetric switches[J]. Journal of Southwest Jiaotong University, 2021, 56(2): 300-305. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202102011.htm
    [4] LAI Jun, XU Jing-mang, WANG Ping, et al. Numerical investigation of dynamic derailment behavior of railway vehicle when passing through a turnout[J]. Engineering Failure Analysis, 2021, 121: 105132. doi: 10.1016/j.engfailanal.2020.105132
    [5] 乔雨, 许玉德, 孙小辉, 等. 编组方式对驼峰下道岔区脱轨系数的影响[J]. 华东交通大学学报, 2018, 35(5): 9-16. https://www.cnki.com.cn/Article/CJFDTOTAL-HDJT201805002.htm

    QIAO Yu, XU Yu-de, SUN Xiao-hui, et al. Influence of marshalling mode on derailment coefficient at the turnout of hump yard[J]. Journal of East China Jiaotong University, 2018, 35(5): 9-16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HDJT201805002.htm
    [6] 朱耀斌, 孙晓楠, 陈富宾. 驼峰平纵断面条件对脱轨安全性影响及整治方案研究[J]. 中国铁路, 2015(8): 29-33. https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201508007.htm

    ZHU Yao-bin, SUN Xiao-nan, CHEN Fu-bin. Study on the influences of hump horizontal and vertical section conditions on derailment safety and its corresponding treatment scheme[J]. China Railway, 2015(8): 29-33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201508007.htm
    [7] WANG Ping, WANG Jian, MA Xiao-chuan, et al. Theoretical 3D model for quasi-static critical derailment coefficient of railway vehicles and a simplified formula[J]. Mathematical Problems in Engineering, 2018, 2018: 7910753.
    [8] 王健. 基于轮轨关系的小号码道岔转辙器区脱轨机理研究[D]. 成都: 西南交通大学, 2018.

    WANG Jian. Study on derailment theory of switch aera in small number turnouts based on wheel-rail relationship[D]. Chengdu: Southwest Jiaotong University, 2018. (in Chinese)
    [9] 王平, 陈嵘, 徐井芒, 等. 高速铁路道岔系统理论与工程实践研究综述[J]. 西南交通大学学报, 2016, 51(2): 357-372. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201602016.htm

    WANG Ping, CHEN Rong, XU Jing-mang, et al. Theories and engineering practices of high-speed railway turnout system: survey and review[J]. Journal of Southwest Jiaotong University, 2016, 51(2): 357-372. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201602016.htm
    [10] 杨桐, 董昱. 基于多传感器数据融合的道岔区脱轨系数预测算法[J]. 铁道科学与工程学报, 2020, 17(8): 1883-1892. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202008001.htm

    YANG Tong, DONG Yu. Prediction algorithm of derailment coefficient in turnout area based on multi-sensor data fusion[J]. Journal of Railway Science and Engineering, 2020, 17(8): 1883-1892. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202008001.htm
    [11] LI Chao, ZHAO Lin-hai. A railway turnout closeness state monitoring method based on the switch gap images[J]. IEEE Intelligent Transportation Systems Magazine, 2022, 14(4): 214-229. doi: 10.1109/MITS.2021.3053036
    [12] 龚凯, 向俊, 毛建红, 等. 地震引起的货物列车脱轨全过程计算[J]. 东南大学学报(自然科学版), 2016, 46(3): 664-670. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201603036.htm

    GONG Kai, XIANG Jun, MAO Jian-hong, et al. Calculation of freight train derailment course induced by earthquake[J]. Journal of Southeast University (Natural Science Edition), 2016, 46(3): 664-670. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201603036.htm
    [13] 王开云, 王少林, 杨久川, 等. 地震环境下铁路轮轨动态安全性能及脱轨研究进展[J]. 地震工程与工程振动, 2012, 32(6): 82-94. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201206011.htm

    WANG Kai-yun, WANG Shao-lin, YANG Jiu-chuan, et al. Progress in study on wheel/rail dynamic safety and derailment of railway during an earthquake[J]. Journal of Earthquake Engineering and Engineering Vibration, 2012, 32(6): 82-94. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201206011.htm
    [14] 周智辉, 曾庆元. 列车脱轨分析理论与控制脱轨的桥梁横向刚度限值研究[J]. 中国铁道科学, 2009, 30(1): 136-138. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200901026.htm

    ZHOU Zhi-hui, ZENG Qing-yuan. Study on the analysis theory of train derailment and the limit value of bridge lateral rigidity for derailment control[J]. China Railway Science, 2009, 30(1): 136-138. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200901026.htm
    [15] 肖新标, 金学松, 温泽峰. 钢轨扣件失效对列车动态脱轨的影响[J]. 交通运输工程学报, 2006, 6(1): 10-15. https://transport.chd.edu.cn/article/id/200601002

    XIAO Xin-biao, JIN Xue-song, WEN Ze-feng. Influence of rail fastener failure on vehicle dynamic derailment[J]. Journal of Traffic and Transportation Engineering, 2006, 6(1): 10-15. (in Chinese) https://transport.chd.edu.cn/article/id/200601002
    [16] ZHOU Li, SHEN Zhi-yun. Dynamic analysis of a high-speed train operating on a curved track with failed fasteners[J]. Journal of Zhejiang University—Science A, 2013, 14(6): 447-458. doi: 10.1631/jzus.A1200321
    [17] 张鹏飞, 杨奥闯, 张庆欢. 新型高速道岔结构研发及列车过岔安全性分析[J]. 铁道建筑, 2024, 64(1): 34-39. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ202401006.htm

    ZHANG Peng-fei, YANG Ao-chuang, ZHANG Qing-huan. Research and development of new high speed turnout structure and safety analysis while train passing through turnout[J]. Railway Engineering, 2024, 64(1): 34-39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ202401006.htm
    [18] 马晓川, 王平, 徐金辉, 等. 钢轨轧制不平顺对车岔耦合系统垂向动力特性的影响[J]. 中南大学学报(自然科学版), 2017, 48(7): 1942-1950. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201707035.htm

    MA Xiao-chuan, WANG Ping, XU Jin-hui. et al. Effect of rail straightening irregularity on vertical dynamic characteristics of vehicle-turnout coupling system[J]. Journal of Central South University (Science and Technology), 2017, 48(7): 1942-1950. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201707035.htm
    [19] 司道林, 杨东升, 王树国, 等. 高速道岔辙叉结构不平顺动力学特性分析[J]. 铁道建筑, 2018, 58(1): 67-69. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201801016.htm

    SI Dao-lin, YANG Dong-sheng, WANG Shu-guo, et al. Analysis on dynamic characteristics of high speed turnout frog structure in irregularity state[J]. Railway Engineering, 2018, 58(1): 67-69. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201801016.htm
    [20] 周鹏喜, 黄运华, 丁军君, 等. 地震作用下护轨对齿轨车辆运行安全性影响研究[J]. 机械, 2023, 50(9): 31-38. https://www.cnki.com.cn/Article/CJFDTOTAL-MECH202309005.htm

    ZHOU Peng-xi, HUANG Yun-hua, DING Jun-jun, et al. Research on the influence of guard rail on the operation safety of rack railway vehicles under earthquake[J]. Machinery, 2023, 50(9): 31-38. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MECH202309005.htm
    [21] 郭威. 列车线路碰撞试验平台防护轨结构设计与优化[D]. 长沙: 中南大学, 2022.

    GUO Wei. Structural design and optimization of the guardrail for train-to-train collision test bench[D]. Changsha: Central South University, 2022. (in Chinese)
    [22] 刘沛, 陈卫国, 张耀. 基于BIM的铁路车辆-无砟轨道护轨性能分析[J]. 铁道建筑, 2021, 61(9): 138-143. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ202109029.htm

    LIU Pei, CHEN Wei-guo, ZHANG Yao. Performance analysis of railway vehicle-ballastless track guard track based on BIM[J]. Railway Engineering, 2021, 61(9): 138-143. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ202109029.htm
    [23] 刘腾, 周雄飞, 王成全, 等. 列车碰撞事故下轮轨动态作用机理与脱轨抑制技术[J]. 兵工学报, 2023, 44(增1): 67-78. https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO2023S1007.htm

    LIU Teng, ZHOU Xiong-fei, WANG Cheng-quan, et al. Wheel-rail interaction mechanism and derailment suppression technology for train collision accidents[J]. Acta Armamentarii, 2023, 44(S1): 67-78. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO2023S1007.htm
    [24] 孙丽霞, 姚建伟, 成棣, 等. 高速车辆动态脱轨临界状态评判方法[J]. 中国铁道科学, 2020, 41(2): 113-122. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202002014.htm

    SUN Li-xia, YAO Jian-wei, CHENG Di, et al. Critical state evaluation method for dynamic derailment of high speed vehicle[J]. China Railway Science, 2020, 41(2): 113-122. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202002014.htm
    [25] 鈴木貢. 带防脱轨装置的转向架[J]. 国外铁道机车与动车, 2023(4): 37-39, 48. https://www.cnki.com.cn/Article/CJFDTOTAL-GWMJ202304008.htm

    SUZUKI H. Bogie with anti-derailment device[J]. Foreign Railway Locomotive and Motor Car, 2023(4): 37-39, 48. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWMJ202304008.htm
    [26] 翁涛涛. 高速道岔磨耗分析及打磨廓形优化设计[D]. 南昌: 华东交通大学, 2023.

    WENG Tao-tao. Wear analysis and grinding profile optimization design of high-speed turnout[D]. Nanchang: East China Jiaotong University, 2023. (in Chinese)
    [27] 钱鑫. 高速道岔转辙器区优化廓形设计及其适应性分析[D]. 南昌: 华东交通大学, 2023.

    QIAN Xin. Optimal profile design and adaptability analysis of high-speed turnout switch area[D]. Nanchang: East China Jiaotong University, 2023. (in Chinese)
    [28] 林凤涛, 翁涛涛, 杨洋, 等. 道岔辙叉区磨耗车轮动力学分析及摩擦因数影响[J]. 铁道科学与工程学报, 2023, 20(4): 1316-1325. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202304018.htm

    LIN Feng-tao, WENG Tao-tao, YANG Yang, et al. Dynamic analysis of wear wheel in turnout frog area and influence of friction coefficient[J]. Journal of Railway Science and Engineering, 2023, 20(4): 1316-1325. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202304018.htm
    [29] 王树国, 王璞, 葛晶, 等. 高速道岔尖轨磨耗特征及管理限值研究[J]. 中国铁道科学, 2022, 43(1): 9-16. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202201002.htm

    WANG Shu-guo, WANG Pu, GE Jing, et al. Study on wear characteristics and management limit of switch rail in high-speed turnout[J]. China Railway Science, 2022, 43(1): 9-16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202201002.htm
    [30] WANG Pu, WANG Shu-guo, ZHAO Zhen-hua. Mechanism of derailment at the guardrail position of turnout and a reasonable guardrail interval limit[J]. Applied Sciences, 2022, 12(17): 8496. doi: 10.3390/app12178496
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  458
  • HTML全文浏览量:  167
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-08
  • 网络出版日期:  2024-05-16
  • 刊出日期:  2024-04-30

目录

    /

    返回文章
    返回