-
摘要: 结合西安地层特点,依托5座在建洞桩法地铁车站实体工程,分析了不同基础型式的结构承载特性和最不利工况,选取地基承载力、水平抗剪切、抗倾覆、基底抗隆起、结构允许水平位移作为评价基础结构强度及刚度安全性的基本准则,构建了洞桩法基础结构的力学模型,推导了不同破坏模式下结构的安全系数计算公式,提出了适用于西安地区洞桩法基础结构选型理论体系中各项安全系数取值建议,给出了不同地层及埋深条件下单排长桩基础和柱下条形基础的适用范围。研究结果表明:西安地区洞桩法基础结构按地基承载力、水平抗剪切、抗倾覆、基底抗隆起及结构允许水平位移等基本准则计算时,安全系数应分别不小于1.2、1.3、1.3、1.6、1.4;洞桩法的中柱基础结构选型主要受地基竖向承载力准则的影响,采用相同柱跨型式时,柱下条形基础在砂土地层中的适用性优于其在粉质黏土-砂互层和粉质黏土地层中的适用性,而单排长桩基础可通过增加桩长等方式提高结构承载力,理论上在各类地层条件下的适用性均优于柱下条形基础;边桩基础结构需要采用复合准则综合分析其适用性,柱下条形基础结构的适用性受地层条件影响较大,在粉质黏土和粉质黏土-砂互层条件下结构抗倾覆安全性难以满足要求,而单排长桩基础在各项准则下主要受自身结构强度和刚度的影响,在各类地层中的适用埋深无明显差异;西安地区洞桩法地铁车站采用单排长桩基础型式的适用性较好,而柱下条形基础可通过扩大基础宽度等方式来满足结构安全性要求。Abstract: Based on the stratum characteristics in Xi'an, the structural bearing characteristics of different foundation types and the most unfavorable working conditions were analyzed, with the five metro stations under construction by the pile-beam-arch (PBA) method as the example. The foundation bearing capacity, horizontal shear resistance, anti-overturning capacity, anti-uplift of the foundation, and allowable horizontal displacement of the structure were selected as the basic criteria for evaluating the structural strength and stiffness safety of the foundation structure. The mechanical model of the foundation structure by PBA method was constructed, and the calculation formulas of the structural safety factors under different failure modes were deduced. Some suggestions on the safety factors values in the type selection theory system of the foundation structure by PBA method in Xi'an were put forward. The application scopes of single-row long pile foundation and strip foundation under the column in different strata and buried depths were given. Research results show that when the foundation structure by PBA method in Xi'an is calculated according to the basic criteria of foundation bearing capacity, horizontal shear resistance, anti-overturning capacity, anti-uplift of the foundation, and allowable horizontal displacement of the structure, the safety factors should be not less than 1.2, 1.3, 1.3, 1.6, and 1.4, respectively. The structure selection of the middle column foundation by PBA method is mainly affected by the vertical bearing capacity criterion of the foundation. When the same column span type is adopted, the applicability of the strip foundation under the column in the sandy soil stratum is better than that in the silty clay-sand interbedded stratum and silty clay stratum. The structural bearing capacity of the single-row long pile foundation can be improved by increasing the pile length. Theoretically, the applicability of the single-row long pile foundation under various stratum conditions is better than that of the strip foundation under the column. The composite criteria should be used to comprehensively analyze the applicability of the side pile foundation structure. The applicability of the strip foundation structure under the column is greatly affected by the stratum condition, and the anti-overturning safety of the structure is difficult to meet the requirements under the conditions of silty clay and silty clay-sand interbedded stratum. However, the single-row long pile foundation is mainly affected by its own structural strength and stiffness under various criteria, and there is no significant difference in the applicable burial depths in various strata. The single-row long pile foundation is more applicable for the metro station in Xi'an by PBA method, while the strip foundation under the column can meet the structural safety requirements by expanding the foundation width.
-
表 1 基本准则
Table 1. Basic criteria
准则类型 基本准则 主要内容 地层准则 地基竖向承载力 以地基与建筑条件下的地基承载力修正值判断 基底抗隆起稳定性 以基坑直剪破坏作为基底隆起分析模型,引入桩墙入土深度及土体抗剪强度进行分析 承载结构准则 水平抗剪切安全性 以结构水平向受力平衡进行判别 抗倾覆安全性 以结构内外土压力及自身抗剪作用下对危险点的弯矩作用进行分析 结构允许水平位移 以规范标准中支护水平变形确定桩墙结构水平承载力 复合准则 可结合工程设计及施工措施采用上述多种判别准则共同分析 表 2 不同柱跨设计型式的支座反力
Table 2. Reaction forces of bearings with different column span design types
结构类型 附属结构力学简化模型 支座反力求解结果 单拱无柱 X1=X2=ql 双拱单柱 $X_1=X_3=\frac{3 q l}{8}$
$X_2=\frac{5 q l}{4}$三拱双柱 $X_1=X_4=\frac{q l}{4}$
$X_2=X_3=\frac{3 q l}{4}$表 3 广济街站地层参数
Table 3. Strata parameters of Guangjijie Station
土层 重度/(kg·m-3) 摩擦角/(°) 黏聚力/kPa 人工填土 18.0 12 10 新黄土 16.7 22 25 粉质黏土 19.1 23 28 中砂 20.0 32 0 表 4 广济街站基础安全性验算结果
Table 4. Safety checking results of foundation of Guangjijie Station
安全系数 边桩 中柱 单排长桩基础 柱下条形基础 单排长桩基础 柱下条形基础 K1 3.06 1.31 K2 1.48 1.29 K3 1.40 1.03 K4 1.26 K5 1.99 1.99 表 5 新植物园站地层参数
Table 5. Strata parameters of Xinzhiwuyuan Station
土层 重度/(kg·m-3) 摩擦角/(°) 黏聚力/kPa 人工填土 16.0 12 5 粉质黏土 17.6 24 30 表 6 新植物园站基础安全性验算结果
Table 6. Safety checking results of foundation of Xinzhiwuyuan Station
安全系数 单排长桩基础 柱下条形基础 K1 2.14 K2 1.01 1.31 K3 0.97 1.47 K5 1.44 1.44 表 7 小白杨站地层参数
Table 7. Strata parameters of Xiaobaiyang Station
土层 重度/(kg·m-3) 摩擦角/(°) 黏聚力/kPa 杂填土 16.5 10.0 5.0 素填土 15.5 12.0 10.0 黄土状土 17.6 19.5 25.0 粉质黏土 19.6 20.0 28.0 中砂 20.0 30.0 0.0 表 8 小白杨站基础安全性验算结果
Table 8. Safety checking results of foundation of Xiaobaiyang Station
安全系数 边桩 中柱 单排长桩基础 柱下条形基础 单排长桩基础 柱下条形基础 K1 2.90 0.79 K2 1.67 1.41 K3 1.58 1.09 K4 1.23 K5 2.24 2.24 表 9 基础结构安全系数取值建议
Table 9. Suggested values for safety factors of foundation structure
安全系数 K1 K2 K3 K4 K5 取值范围 ≥1.2 ≥1.3 ≥1.3 ≥1.6 ≥1.4 表 10 不同基础型式适用地层埋深范围(中柱)
Table 10. Applicable burial depth ranges of different foundation types (middle columns)
m 结构型式 砂土 粉质黏土 粉质黏土-砂土 双拱单柱 单排长桩基础 由桩长决定 由桩长决定 由桩长决定 柱下条形基础 0~10.3 0~1.8 0~6.0 三拱双柱 单排长桩基础 由桩长决定 由桩长决定 由桩长决定 柱下条形基础 始终适用 0~10.1 始终适用 表 11 不同基础型式适用地层埋深范围(边桩)
Table 11. Applicable burial depth ranges of different foundation types (side piles)
m 结构型式 砂土 粉质黏土 粉质黏土-砂土 单拱无柱 单排长桩基础 0~14.4 0~13.2 0~10.7 柱下条形基础 0~14.0 0~3.8 均不适用 双拱单柱 单排长桩基础 0~14.4 0~13.2 0~10.7 柱下条形基础 0~14.0 均不适用 均不适用 三拱双柱 单排长桩基础 0~14.4 0~13.2 0~10.7 柱下条形基础 均不适用 均不适用 均不适用 -
[1] 晏启祥, 徐亚军, 刘罡, 等. 洞桩法地铁车站施工力学行为及其修正荷载-结构模型研究[J]. 现代隧道技术, 2016, 53(6): 165-173. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201606022.htmYAN Qi-xiang, XU Ya-jun, LIU Gang, et al. Study on the construction mechanical behaviors of a subway station by PBA method and optimization of the load-structure model[J]. Modern Tunnelling Technology, 2016, 53(6): 165-173. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201606022.htm [2] 瞿万波, 刘新荣. 洞桩法施工地铁车站的边桩内力计算[J]. 地下空间与工程学报, 2013, 9(1): 102-105, 160. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201301018.htmQU Wan-bo, LIU Xin-rong. Internal force calculation of piles in metro station construction using PBA method[J]. Chinese Journal of Underground Space and Engineering, 2013, 9(1): 102-105, 160. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201301018.htm [3] LIU Xin-rong, LIU Yong-quan, YANG Zhong-ping, et al. Numerical analysis on the mechanical performance of supporting structures and ground settlement characteristics in construction process of subway station built by pile-beam-arch method[J]. KSCE Journal of Civil Engineering, 2017, 21(5): 1690-1705. doi: 10.1007/s12205-016-0004-9 [4] YAN Mei, DING De-yun, YANG Xiu-ren, et al. 3D numerical analysis of metro station by PBA method to enlarge existing large-size shield tunnel[J]. Applied Mechanics and Materials, 2012, 170-173: 1673-1678. doi: 10.4028/www.scientific.net/AMM.170-173.1673 [5] 周稳弟, 梁庆国, 张晋东. 某地铁车站洞桩法施工变形和结构受力分析[J]. 现代隧道技术, 2021, 58(6): 121-128.ZHOU Wen-di, LIANG Qing-guo, ZHANG Jin-dong. Analysis of the deformation and structural stress of a metro station constructed by pile-beam-arch method[J]. Modern Tunnelling Technology, 2021, 58(6): 121-128. (in Chinese) [6] 邢慧堂, 秦世朋, 唐卓华, 等. 桩洞法施工地层响应及结构受力分析[J]. 现代隧道技术, 2018, 55(5): 229-237. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201805030.htmXING Hui-tang, QIN Shi-peng, TANG Zhuo-hua, et al. Analysis of ground response and structure stress induced by PBA method[J]. Modern Tunnelling Technology, 2018, 55(5): 229-237. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201805030.htm [7] ZHU Zhan-guo, ZHAO Wen, TAN Xiao-bing, et al. Study and application of PBA tunneling technology in Shenyang Metro[J]. Applied Mechanics and Materials, 2013, 353-356: 1386-1389. doi: 10.4028/www.scientific.net/AMM.353-356.1386 [8] LIU Jun, WANG Fang, HE Shao-hui, et al. Enlarging a large-diameter shield tunnel using the pile-beam-arch method to create a metro station[J]. Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research, 2015, 49: 130-143. [9] 赵江涛, 牛晓凯, 苏洁, 等. 洞桩法地铁车站顺行密贴下穿既有隧道方案优化研究[J]. 现代隧道技术, 2018, 55(3): 176-185. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201803026.htmZHAO Jiang-tao, NIU Xiao-kai, SU Jie, et al. Optimization of the construction scheme for a PBA metro station adjacent to an existing metro tunnel[J]. Modern Tunnelling Technology, 2018, 55(3): 176-185. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201803026.htm [10] GUO Xin-ping, JIANG An-nan, WANG Shan-yong. Study on the applicability of an improved pile-beam-arch method of metro station construction in the upper-soft and lower-hard stratum[J]. Advances in Civil Engineering, 2021, 2021(4): 1-13. [11] 任建喜, 曹西太郎. PBA法地铁车站施工诱发地表变形规律研究[J]. 铁道工程学报, 2018, 35(9): 88-92. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201809016.htmREN Jian-xi, CAO Xi-tailang. Research on the surface settlement of subway station induced by PBA construction method[J]. Journal of Railway Engineering Society, 2018, 35(9): 88-92. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201809016.htm [12] 朱统步. PBA工法、洞桩法的对比分析和改进措施[J]. 筑路机械与施工机械化, 2016, 33(5): 88-91. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLJX201605033.htmZHU Tong-bu. Comparison of PBA and cavern-pile method and improvement measure[J]. Road Machinery and Construction Mechanization, 2016, 33(5): 88-91. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZLJX201605033.htm [13] 汪晨晓. PBA工法地铁车站施工引起地表沉降规律研究[D]. 北京: 中国地质大学, 2017.WANG Chen-xiao. The research of surface subsidence of subway station constructed by the PBA method[D]. Beijing: China University of Geosciences, 2017. (in Chinese) [14] 高成雷, 朱永全. 浅埋暗挖洞桩法参数敏感性分析[J]. 岩土力学, 2007, 28(增1): 536-539, 544. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-AGLU200710007109.htmGAO Cheng-lei, ZHU Yong-quan. Sensitivity analysis of parameters of cavern-pile method for shallow buried underground excavated tunnels[J]. Rock and Soil Mechanics, 2007, 28(S1): 536-539, 544. (in Chinese) https://cpfd.cnki.com.cn/Article/CPFDTOTAL-AGLU200710007109.htm [15] 刘运思, 牟天光, 郭磊, 等. 不同覆跨比下洞桩法导洞开挖引发地表变形规律研究[J]. 公路交通科技, 2020, 37(12): 100-107. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK202012013.htmLIU Yun-si, MOU Tian-guang, GUO Lei, et al. Study on rule of surface deformation caused by excavation of pilot tunnel under different thickness-span ratio using hole pile method[J]. Journal of Highway and Transportation Research and Development, 2020, 37(12): 100-107. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK202012013.htm [16] 王博. 黄土地区地铁车站PBA工法导洞形式优化分析[J]. 铁道标准设计, 2020, 64(4): 117-122, 129. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS202004022.htmWANG Bo. Optimization analysis of heading form of PBA construction method for metro station in loess area[J]. Railway Standard Design, 2020, 64(4): 117-122, 129. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS202004022.htm [17] 侯旭丰, 高波, 申玉生, 等. 基于正交试验浅埋暗挖洞桩法车站边桩的影响因素分析[J]. 铁道科学与工程学报, 2016, 13(12): 2463-2470. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201612021.htmHOU Xu-feng, GAO Bo, SHEN Yu-sheng, et al. Analysis of side pile influencing factors in shallow underground excavated cave pile method station based on orthogonal test[J]. Journal of Railway Science and Engineering, 2016, 13(12): 2463-2470. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201612021.htm [18] 李涛, 高源, 邵文, 等. 倾斜荷载对洞桩法边桩变形规律影响研究[J]. 地下空间与工程学报, 2019, 15(增2): 666-672, 686. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2019S2023.htmLI Tao, GAO Yuan, SHAO Wen, et al. Study on the influence of inclined load in the deformation law of lide piles using PBA method[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(S2): 666-672, 686. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2019S2023.htm [19] 瞿万波, 刘新荣. 洞桩法隧道边桩参数对变形规律的影响研究[J]. 地下空间与工程学报, 2013, 9(2): 258-262. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201302008.htmQU Wan-bo, LIU Xin-rong. Influence of parameters on lateral displacement of piles in tunnels using PBA method[J]. Chinese Journal of Underground Space and Engineering, 2013, 9(2): 258-262. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201302008.htm [20] 任建喜, 刘田田, 云梦晨, 等. 边桩对PBA法黄土车站地表变形的影响分析[J]. 铁道工程学报, 2020, 37(1): 109-114. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC202001018.htmREN Jian-xi, LIU Tian-tian, YUN Meng-chen, et al. Analysis of the influence of side pile on the surface deformation of loess station by PBA method[J]. Journal of Railway Engineering Society, 2020, 37(1): 109-114. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC202001018.htm [21] 来弘鹏, 赵鑫, 康佐. 黄土地区新建地铁隧道下穿时既有地铁线路沉降控制标准[J]. 交通运输工程学报, 2018, 18(4): 63-71. doi: 10.19818/j.cnki.1671-1637.2018.04.007LAI Hong-peng, ZHAO Xin, KANG Zuo. Settlement control standard of existing metro line undercrossed by new metro tunnel in loess area[J]. Journal of Traffic and Transportation Engineering, 2018, 18(4): 63-71. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2018.04.007 [22] 李国胜. 对地基规范中地基承载力深度修正问题深入探讨[J]. 建筑结构, 2016, 46(增2): 496-501. https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG2016S2106.htmLI Guo-sheng. In-depth exploration of depth correction of foundation bearing capacity in foundation specifications[J]. Building Structure, 2016, 46(S2): 496-501. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG2016S2106.htm [23] 范建好. 互层土地基承载力特征值的确定[J]. 工程勘察, 2008(增2): 17-20. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC2008S2004.htmFAN Jian-hao. Determination of characteristic values of bearing capacity of interlayer soil foundation[J]. Geotechnical Investigation and Surveying, 2008(S2): 17-20. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC2008S2004.htm [24] 马林, 赵队家, 陈昌禄. 平面应变下结构性对黄土基坑稳定性的影响[J]. 岩土力学, 2013, 34(增1): 419-424. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2013S1064.htmMA Lin, ZHAO Dui-jia, CHEN Chang-lu. Study of influence of structural property on stability of foundation pit under plane strain condition[J]. Rock and Soil Mechanics, 2013, 34(S1): 419-424. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2013S1064.htm [25] 王洪新, 周松. 基坑围护结构的抗冲剪稳定安全系数的计算与应用[J]. 岩石力学与工程学报, 2012, 31(11): 2312-2318. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201211019.htmWANG Hong-xin, ZHOU Song. Calculation of safety factor of punching shear-resistant stability for retaining structure of foundation pits and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(11): 2312-2318. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201211019.htm [26] 张飞, 李镜培, 孙长安, 等. 软土狭长深基坑抗隆起破坏模式试验研究[J]. 岩土力学, 2016, 37(10): 2825-2832. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201610012.htmZHANG Fei, LI Jing-pei, SUN Chang-an, et al. Experimental study of basal heave failure mode of narrow-deep foundation pit in soft clay[J]. Rock and Soil Mechanics, 2016, 37(10): 2825-2832. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201610012.htm [27] 应宏伟, 王小刚, 张金红. 考虑基坑宽度影响的基坑抗隆起稳定分析[J]. 工程力学, 2018, 35(5): 118-124. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201805015.htmYING Hong-wei, WANG Xiao-gang, ZHANG Jin-hong. Analysis on heave-resistant stability considering the effect of excavation width[J]. Engineering Mechanics, 2018, 35(5): 118-124. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201805015.htm [28] 宋二祥, 付浩, 李贤杰. 基坑坑底抗隆起稳定安全系数计算方法改进研究[J]. 土木工程学报, 2021, 54(3): 109-118. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202103010.htmSONG Er-xiang, FU Hao, LI Xian-jie. Improvement of calculation method for safety factor of basal heave stability of deep excavation[J]. China Civil Engineering Journal, 2021, 54(3): 109-118. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202103010.htm [29] 童磊, 刘兴旺, 袁静, 等. 深厚软弱土基坑墙底抗隆起稳定性验算的探讨[J]. 岩土工程学报, 2013, 35(增2): 707-711. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2129.htmTONG Lei, LIU Xing-wang, YUAN Jing, et al. Basal heave stability analysis for excavations in deep soft clays[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 707-711. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2129.htm [30] 王晓伟, 刘涛, 王尔觉. 注浆效果对地铁隧道施工沉降的影响分析[J]. 岩土工程学报, 2010, 32(增2): 402-405. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2010S2099.htmWANG Xiao-wei, LIU Tao, WANG Er-jue. Grouting effect on the settlement of subway tunnel construction[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(S2): 402-405. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2010S2099.htm [31] 肖昭然. 单桩分析的双曲线模型及相应参数的确定[J]. 土工基础, 2002, 16(3): 60-63, 75. https://www.cnki.com.cn/Article/CJFDTOTAL-TGJC200203019.htmXIAO Zhao-ran. Determination of hyperbolic model and its corresponding parameters in single-pile analysis[J]. Soil Engineering and Foundation, 2002, 16(3): 60-63, 75. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TGJC200203019.htm [32] 李又云, 谢柯, 孙永梅, 等. 浅埋黄土隧道复合地基受力变形分析及加固时机选择[J]. 岩石力学与工程学报, 2019, 38(11): 2332-2343. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201911018.htmLI You-yun, XIE Ke, SUN Yong-mei, et al. Stress and deformation analysis and reinforcement time selection of composite foundations in shallow loess tunnels[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(11): 2332-2343. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201911018.htm [33] 王扩, 姚爱军, 张东, 等. 富水地层中暗挖地铁车站洞内咬合桩力学性能及优化[J]. 地下空间与工程学报, 2021, 17(增2): 779-787. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2021S2037.htmWANG Kuo, YAO Ai-jun, ZHANG Dong, et al. Mechanical properties and optimization of secant piles in underground excavated subway stations in water-rich stratum[J]. Chinese Journal of Underground Space and Engineering, 2021, 17(S2): 779-787. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2021S2037.htm