留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

西安地区洞桩法地铁车站基础结构选型

来弘鹏 马小杰

来弘鹏, 马小杰. 西安地区洞桩法地铁车站基础结构选型[J]. 交通运输工程学报, 2024, 24(2): 125-136. doi: 10.19818/j.cnki.1671-1637.2024.02.008
引用本文: 来弘鹏, 马小杰. 西安地区洞桩法地铁车站基础结构选型[J]. 交通运输工程学报, 2024, 24(2): 125-136. doi: 10.19818/j.cnki.1671-1637.2024.02.008
LAI Hong-peng, MA Xiao-jie. Foundation structure selection of metro stations in Xi'an by PBA method[J]. Journal of Traffic and Transportation Engineering, 2024, 24(2): 125-136. doi: 10.19818/j.cnki.1671-1637.2024.02.008
Citation: LAI Hong-peng, MA Xiao-jie. Foundation structure selection of metro stations in Xi'an by PBA method[J]. Journal of Traffic and Transportation Engineering, 2024, 24(2): 125-136. doi: 10.19818/j.cnki.1671-1637.2024.02.008

西安地区洞桩法地铁车站基础结构选型

doi: 10.19818/j.cnki.1671-1637.2024.02.008
基金项目: 

国家自然科学基金项目 51978064

国家自然科学基金项目 51908051

国家自然科学基金项目 52278391

详细信息
    作者简介:

    来弘鹏(1979-),男,山西平遥人,长安大学教授,工学博士,从事隧道、地下与岩土工程研究

  • 中图分类号: U231.4

Foundation structure selection of metro stations in Xi'an by PBA method

Funds: 

National Natural Science Foundation of China 51978064

National Natural Science Foundation of China 51908051

National Natural Science Foundation of China 52278391

More Information
  • 摘要: 结合西安地层特点,依托5座在建洞桩法地铁车站实体工程,分析了不同基础型式的结构承载特性和最不利工况,选取地基承载力、水平抗剪切、抗倾覆、基底抗隆起、结构允许水平位移作为评价基础结构强度及刚度安全性的基本准则,构建了洞桩法基础结构的力学模型,推导了不同破坏模式下结构的安全系数计算公式,提出了适用于西安地区洞桩法基础结构选型理论体系中各项安全系数取值建议,给出了不同地层及埋深条件下单排长桩基础和柱下条形基础的适用范围。研究结果表明:西安地区洞桩法基础结构按地基承载力、水平抗剪切、抗倾覆、基底抗隆起及结构允许水平位移等基本准则计算时,安全系数应分别不小于1.2、1.3、1.3、1.6、1.4;洞桩法的中柱基础结构选型主要受地基竖向承载力准则的影响,采用相同柱跨型式时,柱下条形基础在砂土地层中的适用性优于其在粉质黏土-砂互层和粉质黏土地层中的适用性,而单排长桩基础可通过增加桩长等方式提高结构承载力,理论上在各类地层条件下的适用性均优于柱下条形基础;边桩基础结构需要采用复合准则综合分析其适用性,柱下条形基础结构的适用性受地层条件影响较大,在粉质黏土和粉质黏土-砂互层条件下结构抗倾覆安全性难以满足要求,而单排长桩基础在各项准则下主要受自身结构强度和刚度的影响,在各类地层中的适用埋深无明显差异;西安地区洞桩法地铁车站采用单排长桩基础型式的适用性较好,而柱下条形基础可通过扩大基础宽度等方式来满足结构安全性要求。

     

  • 图  1  不同基础型式的水平受力

    Figure  1.  Horizontal stresses of different foundation types

    图  2  单排长桩基础抗倾覆稳定计算图示

    Figure  2.  Calculation chart of anti-overturning stability of single-row long pile foundation

    图  3  柱下条形基础抗倾覆稳定计算图示

    Figure  3.  Calculation chart of anti-overturning stability of strip foundation under column

    图  4  直接剪切破坏模式

    Figure  4.  Direct shear failure mode

    图  5  不同基础型式洞桩法地铁车站数值模型

    Figure  5.  Numerical models of metro stations with different foundation types by PBA method

    图  6  边桩轴力计算结果

    Figure  6.  Calculation results of side pile axial forces

    图  7  中柱轴力计算结果

    Figure  7.  Calculation results of middle column axial forces

    图  8  边桩水平位移计算结果

    Figure  8.  Horizontal displacement calculation results of side piles

    图  9  车站底部土体卸荷回弹

    Figure  9.  Unloading rebounds of soil at bottom of station

    图  10  小白杨站结构

    Figure  10.  Structure of Xiaobaiyang Station

    表  1  基本准则

    Table  1.   Basic criteria

    准则类型 基本准则 主要内容
    地层准则 地基竖向承载力 以地基与建筑条件下的地基承载力修正值判断
    基底抗隆起稳定性 以基坑直剪破坏作为基底隆起分析模型,引入桩墙入土深度及土体抗剪强度进行分析
    承载结构准则 水平抗剪切安全性 以结构水平向受力平衡进行判别
    抗倾覆安全性 以结构内外土压力及自身抗剪作用下对危险点的弯矩作用进行分析
    结构允许水平位移 以规范标准中支护水平变形确定桩墙结构水平承载力
    复合准则 可结合工程设计及施工措施采用上述多种判别准则共同分析
    下载: 导出CSV

    表  2  不同柱跨设计型式的支座反力

    Table  2.   Reaction forces of bearings with different column span design types

    结构类型 附属结构力学简化模型 支座反力求解结果
    单拱无柱 X1=X2=ql
    双拱单柱 $X_1=X_3=\frac{3 q l}{8}$
    $X_2=\frac{5 q l}{4}$
    三拱双柱 $X_1=X_4=\frac{q l}{4}$
    $X_2=X_3=\frac{3 q l}{4}$
    下载: 导出CSV

    表  3  广济街站地层参数

    Table  3.   Strata parameters of Guangjijie Station

    土层 重度/(kg·m-3) 摩擦角/(°) 黏聚力/kPa
    人工填土 18.0 12 10
    新黄土 16.7 22 25
    粉质黏土 19.1 23 28
    中砂 20.0 32 0
    下载: 导出CSV

    表  4  广济街站基础安全性验算结果

    Table  4.   Safety checking results of foundation of Guangjijie Station

    安全系数 边桩 中柱
    单排长桩基础 柱下条形基础 单排长桩基础 柱下条形基础
    K1 3.06 1.31
    K2 1.48 1.29
    K3 1.40 1.03
    K4 1.26
    K5 1.99 1.99
    下载: 导出CSV

    表  5  新植物园站地层参数

    Table  5.   Strata parameters of Xinzhiwuyuan Station

    土层 重度/(kg·m-3) 摩擦角/(°) 黏聚力/kPa
    人工填土 16.0 12 5
    粉质黏土 17.6 24 30
    下载: 导出CSV

    表  6  新植物园站基础安全性验算结果

    Table  6.   Safety checking results of foundation of Xinzhiwuyuan Station

    安全系数 单排长桩基础 柱下条形基础
    K1 2.14
    K2 1.01 1.31
    K3 0.97 1.47
    K5 1.44 1.44
    下载: 导出CSV

    表  7  小白杨站地层参数

    Table  7.   Strata parameters of Xiaobaiyang Station

    土层 重度/(kg·m-3) 摩擦角/(°) 黏聚力/kPa
    杂填土 16.5 10.0 5.0
    素填土 15.5 12.0 10.0
    黄土状土 17.6 19.5 25.0
    粉质黏土 19.6 20.0 28.0
    中砂 20.0 30.0 0.0
    下载: 导出CSV

    表  8  小白杨站基础安全性验算结果

    Table  8.   Safety checking results of foundation of Xiaobaiyang Station

    安全系数 边桩 中柱
    单排长桩基础 柱下条形基础 单排长桩基础 柱下条形基础
    K1 2.90 0.79
    K2 1.67 1.41
    K3 1.58 1.09
    K4 1.23
    K5 2.24 2.24
    下载: 导出CSV

    表  9  基础结构安全系数取值建议

    Table  9.   Suggested values for safety factors of foundation structure

    安全系数 K1 K2 K3 K4 K5
    取值范围 ≥1.2 ≥1.3 ≥1.3 ≥1.6 ≥1.4
    下载: 导出CSV

    表  10  不同基础型式适用地层埋深范围(中柱)

    Table  10.   Applicable burial depth ranges of different foundation types (middle columns) m

    结构型式 砂土 粉质黏土 粉质黏土-砂土
    双拱单柱 单排长桩基础 由桩长决定 由桩长决定 由桩长决定
    柱下条形基础 0~10.3 0~1.8 0~6.0
    三拱双柱 单排长桩基础 由桩长决定 由桩长决定 由桩长决定
    柱下条形基础 始终适用 0~10.1 始终适用
    下载: 导出CSV

    表  11  不同基础型式适用地层埋深范围(边桩)

    Table  11.   Applicable burial depth ranges of different foundation types (side piles) m

    结构型式 砂土 粉质黏土 粉质黏土-砂土
    单拱无柱 单排长桩基础 0~14.4 0~13.2 0~10.7
    柱下条形基础 0~14.0 0~3.8 均不适用
    双拱单柱 单排长桩基础 0~14.4 0~13.2 0~10.7
    柱下条形基础 0~14.0 均不适用 均不适用
    三拱双柱 单排长桩基础 0~14.4 0~13.2 0~10.7
    柱下条形基础 均不适用 均不适用 均不适用
    下载: 导出CSV
  • [1] 晏启祥, 徐亚军, 刘罡, 等. 洞桩法地铁车站施工力学行为及其修正荷载-结构模型研究[J]. 现代隧道技术, 2016, 53(6): 165-173. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201606022.htm

    YAN Qi-xiang, XU Ya-jun, LIU Gang, et al. Study on the construction mechanical behaviors of a subway station by PBA method and optimization of the load-structure model[J]. Modern Tunnelling Technology, 2016, 53(6): 165-173. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201606022.htm
    [2] 瞿万波, 刘新荣. 洞桩法施工地铁车站的边桩内力计算[J]. 地下空间与工程学报, 2013, 9(1): 102-105, 160. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201301018.htm

    QU Wan-bo, LIU Xin-rong. Internal force calculation of piles in metro station construction using PBA method[J]. Chinese Journal of Underground Space and Engineering, 2013, 9(1): 102-105, 160. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201301018.htm
    [3] LIU Xin-rong, LIU Yong-quan, YANG Zhong-ping, et al. Numerical analysis on the mechanical performance of supporting structures and ground settlement characteristics in construction process of subway station built by pile-beam-arch method[J]. KSCE Journal of Civil Engineering, 2017, 21(5): 1690-1705. doi: 10.1007/s12205-016-0004-9
    [4] YAN Mei, DING De-yun, YANG Xiu-ren, et al. 3D numerical analysis of metro station by PBA method to enlarge existing large-size shield tunnel[J]. Applied Mechanics and Materials, 2012, 170-173: 1673-1678. doi: 10.4028/www.scientific.net/AMM.170-173.1673
    [5] 周稳弟, 梁庆国, 张晋东. 某地铁车站洞桩法施工变形和结构受力分析[J]. 现代隧道技术, 2021, 58(6): 121-128.

    ZHOU Wen-di, LIANG Qing-guo, ZHANG Jin-dong. Analysis of the deformation and structural stress of a metro station constructed by pile-beam-arch method[J]. Modern Tunnelling Technology, 2021, 58(6): 121-128. (in Chinese)
    [6] 邢慧堂, 秦世朋, 唐卓华, 等. 桩洞法施工地层响应及结构受力分析[J]. 现代隧道技术, 2018, 55(5): 229-237. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201805030.htm

    XING Hui-tang, QIN Shi-peng, TANG Zhuo-hua, et al. Analysis of ground response and structure stress induced by PBA method[J]. Modern Tunnelling Technology, 2018, 55(5): 229-237. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201805030.htm
    [7] ZHU Zhan-guo, ZHAO Wen, TAN Xiao-bing, et al. Study and application of PBA tunneling technology in Shenyang Metro[J]. Applied Mechanics and Materials, 2013, 353-356: 1386-1389. doi: 10.4028/www.scientific.net/AMM.353-356.1386
    [8] LIU Jun, WANG Fang, HE Shao-hui, et al. Enlarging a large-diameter shield tunnel using the pile-beam-arch method to create a metro station[J]. Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research, 2015, 49: 130-143.
    [9] 赵江涛, 牛晓凯, 苏洁, 等. 洞桩法地铁车站顺行密贴下穿既有隧道方案优化研究[J]. 现代隧道技术, 2018, 55(3): 176-185. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201803026.htm

    ZHAO Jiang-tao, NIU Xiao-kai, SU Jie, et al. Optimization of the construction scheme for a PBA metro station adjacent to an existing metro tunnel[J]. Modern Tunnelling Technology, 2018, 55(3): 176-185. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201803026.htm
    [10] GUO Xin-ping, JIANG An-nan, WANG Shan-yong. Study on the applicability of an improved pile-beam-arch method of metro station construction in the upper-soft and lower-hard stratum[J]. Advances in Civil Engineering, 2021, 2021(4): 1-13.
    [11] 任建喜, 曹西太郎. PBA法地铁车站施工诱发地表变形规律研究[J]. 铁道工程学报, 2018, 35(9): 88-92. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201809016.htm

    REN Jian-xi, CAO Xi-tailang. Research on the surface settlement of subway station induced by PBA construction method[J]. Journal of Railway Engineering Society, 2018, 35(9): 88-92. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201809016.htm
    [12] 朱统步. PBA工法、洞桩法的对比分析和改进措施[J]. 筑路机械与施工机械化, 2016, 33(5): 88-91. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLJX201605033.htm

    ZHU Tong-bu. Comparison of PBA and cavern-pile method and improvement measure[J]. Road Machinery and Construction Mechanization, 2016, 33(5): 88-91. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZLJX201605033.htm
    [13] 汪晨晓. PBA工法地铁车站施工引起地表沉降规律研究[D]. 北京: 中国地质大学, 2017.

    WANG Chen-xiao. The research of surface subsidence of subway station constructed by the PBA method[D]. Beijing: China University of Geosciences, 2017. (in Chinese)
    [14] 高成雷, 朱永全. 浅埋暗挖洞桩法参数敏感性分析[J]. 岩土力学, 2007, 28(增1): 536-539, 544. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-AGLU200710007109.htm

    GAO Cheng-lei, ZHU Yong-quan. Sensitivity analysis of parameters of cavern-pile method for shallow buried underground excavated tunnels[J]. Rock and Soil Mechanics, 2007, 28(S1): 536-539, 544. (in Chinese) https://cpfd.cnki.com.cn/Article/CPFDTOTAL-AGLU200710007109.htm
    [15] 刘运思, 牟天光, 郭磊, 等. 不同覆跨比下洞桩法导洞开挖引发地表变形规律研究[J]. 公路交通科技, 2020, 37(12): 100-107. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK202012013.htm

    LIU Yun-si, MOU Tian-guang, GUO Lei, et al. Study on rule of surface deformation caused by excavation of pilot tunnel under different thickness-span ratio using hole pile method[J]. Journal of Highway and Transportation Research and Development, 2020, 37(12): 100-107. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK202012013.htm
    [16] 王博. 黄土地区地铁车站PBA工法导洞形式优化分析[J]. 铁道标准设计, 2020, 64(4): 117-122, 129. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS202004022.htm

    WANG Bo. Optimization analysis of heading form of PBA construction method for metro station in loess area[J]. Railway Standard Design, 2020, 64(4): 117-122, 129. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS202004022.htm
    [17] 侯旭丰, 高波, 申玉生, 等. 基于正交试验浅埋暗挖洞桩法车站边桩的影响因素分析[J]. 铁道科学与工程学报, 2016, 13(12): 2463-2470. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201612021.htm

    HOU Xu-feng, GAO Bo, SHEN Yu-sheng, et al. Analysis of side pile influencing factors in shallow underground excavated cave pile method station based on orthogonal test[J]. Journal of Railway Science and Engineering, 2016, 13(12): 2463-2470. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201612021.htm
    [18] 李涛, 高源, 邵文, 等. 倾斜荷载对洞桩法边桩变形规律影响研究[J]. 地下空间与工程学报, 2019, 15(增2): 666-672, 686. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2019S2023.htm

    LI Tao, GAO Yuan, SHAO Wen, et al. Study on the influence of inclined load in the deformation law of lide piles using PBA method[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(S2): 666-672, 686. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2019S2023.htm
    [19] 瞿万波, 刘新荣. 洞桩法隧道边桩参数对变形规律的影响研究[J]. 地下空间与工程学报, 2013, 9(2): 258-262. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201302008.htm

    QU Wan-bo, LIU Xin-rong. Influence of parameters on lateral displacement of piles in tunnels using PBA method[J]. Chinese Journal of Underground Space and Engineering, 2013, 9(2): 258-262. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201302008.htm
    [20] 任建喜, 刘田田, 云梦晨, 等. 边桩对PBA法黄土车站地表变形的影响分析[J]. 铁道工程学报, 2020, 37(1): 109-114. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC202001018.htm

    REN Jian-xi, LIU Tian-tian, YUN Meng-chen, et al. Analysis of the influence of side pile on the surface deformation of loess station by PBA method[J]. Journal of Railway Engineering Society, 2020, 37(1): 109-114. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC202001018.htm
    [21] 来弘鹏, 赵鑫, 康佐. 黄土地区新建地铁隧道下穿时既有地铁线路沉降控制标准[J]. 交通运输工程学报, 2018, 18(4): 63-71. doi: 10.19818/j.cnki.1671-1637.2018.04.007

    LAI Hong-peng, ZHAO Xin, KANG Zuo. Settlement control standard of existing metro line undercrossed by new metro tunnel in loess area[J]. Journal of Traffic and Transportation Engineering, 2018, 18(4): 63-71. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2018.04.007
    [22] 李国胜. 对地基规范中地基承载力深度修正问题深入探讨[J]. 建筑结构, 2016, 46(增2): 496-501. https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG2016S2106.htm

    LI Guo-sheng. In-depth exploration of depth correction of foundation bearing capacity in foundation specifications[J]. Building Structure, 2016, 46(S2): 496-501. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG2016S2106.htm
    [23] 范建好. 互层土地基承载力特征值的确定[J]. 工程勘察, 2008(增2): 17-20. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC2008S2004.htm

    FAN Jian-hao. Determination of characteristic values of bearing capacity of interlayer soil foundation[J]. Geotechnical Investigation and Surveying, 2008(S2): 17-20. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC2008S2004.htm
    [24] 马林, 赵队家, 陈昌禄. 平面应变下结构性对黄土基坑稳定性的影响[J]. 岩土力学, 2013, 34(增1): 419-424. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2013S1064.htm

    MA Lin, ZHAO Dui-jia, CHEN Chang-lu. Study of influence of structural property on stability of foundation pit under plane strain condition[J]. Rock and Soil Mechanics, 2013, 34(S1): 419-424. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2013S1064.htm
    [25] 王洪新, 周松. 基坑围护结构的抗冲剪稳定安全系数的计算与应用[J]. 岩石力学与工程学报, 2012, 31(11): 2312-2318. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201211019.htm

    WANG Hong-xin, ZHOU Song. Calculation of safety factor of punching shear-resistant stability for retaining structure of foundation pits and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(11): 2312-2318. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201211019.htm
    [26] 张飞, 李镜培, 孙长安, 等. 软土狭长深基坑抗隆起破坏模式试验研究[J]. 岩土力学, 2016, 37(10): 2825-2832. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201610012.htm

    ZHANG Fei, LI Jing-pei, SUN Chang-an, et al. Experimental study of basal heave failure mode of narrow-deep foundation pit in soft clay[J]. Rock and Soil Mechanics, 2016, 37(10): 2825-2832. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201610012.htm
    [27] 应宏伟, 王小刚, 张金红. 考虑基坑宽度影响的基坑抗隆起稳定分析[J]. 工程力学, 2018, 35(5): 118-124. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201805015.htm

    YING Hong-wei, WANG Xiao-gang, ZHANG Jin-hong. Analysis on heave-resistant stability considering the effect of excavation width[J]. Engineering Mechanics, 2018, 35(5): 118-124. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201805015.htm
    [28] 宋二祥, 付浩, 李贤杰. 基坑坑底抗隆起稳定安全系数计算方法改进研究[J]. 土木工程学报, 2021, 54(3): 109-118. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202103010.htm

    SONG Er-xiang, FU Hao, LI Xian-jie. Improvement of calculation method for safety factor of basal heave stability of deep excavation[J]. China Civil Engineering Journal, 2021, 54(3): 109-118. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202103010.htm
    [29] 童磊, 刘兴旺, 袁静, 等. 深厚软弱土基坑墙底抗隆起稳定性验算的探讨[J]. 岩土工程学报, 2013, 35(增2): 707-711. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2129.htm

    TONG Lei, LIU Xing-wang, YUAN Jing, et al. Basal heave stability analysis for excavations in deep soft clays[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 707-711. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2129.htm
    [30] 王晓伟, 刘涛, 王尔觉. 注浆效果对地铁隧道施工沉降的影响分析[J]. 岩土工程学报, 2010, 32(增2): 402-405. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2010S2099.htm

    WANG Xiao-wei, LIU Tao, WANG Er-jue. Grouting effect on the settlement of subway tunnel construction[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(S2): 402-405. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2010S2099.htm
    [31] 肖昭然. 单桩分析的双曲线模型及相应参数的确定[J]. 土工基础, 2002, 16(3): 60-63, 75. https://www.cnki.com.cn/Article/CJFDTOTAL-TGJC200203019.htm

    XIAO Zhao-ran. Determination of hyperbolic model and its corresponding parameters in single-pile analysis[J]. Soil Engineering and Foundation, 2002, 16(3): 60-63, 75. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TGJC200203019.htm
    [32] 李又云, 谢柯, 孙永梅, 等. 浅埋黄土隧道复合地基受力变形分析及加固时机选择[J]. 岩石力学与工程学报, 2019, 38(11): 2332-2343. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201911018.htm

    LI You-yun, XIE Ke, SUN Yong-mei, et al. Stress and deformation analysis and reinforcement time selection of composite foundations in shallow loess tunnels[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(11): 2332-2343. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201911018.htm
    [33] 王扩, 姚爱军, 张东, 等. 富水地层中暗挖地铁车站洞内咬合桩力学性能及优化[J]. 地下空间与工程学报, 2021, 17(增2): 779-787. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2021S2037.htm

    WANG Kuo, YAO Ai-jun, ZHANG Dong, et al. Mechanical properties and optimization of secant piles in underground excavated subway stations in water-rich stratum[J]. Chinese Journal of Underground Space and Engineering, 2021, 17(S2): 779-787. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2021S2037.htm
  • 加载中
图(10) / 表(11)
计量
  • 文章访问数:  343
  • HTML全文浏览量:  37
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-03
  • 刊出日期:  2024-04-30

目录

    /

    返回文章
    返回