留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自流平环氧沥青混凝土制备及其拌和摊铺期流变性能研究

刘刚 钱振东 陈磊磊 陆国阳 NG Shiu Tong Thomas

刘刚, 钱振东, 陈磊磊, 陆国阳, NG Shiu Tong Thomas. 自流平环氧沥青混凝土制备及其拌和摊铺期流变性能研究[J]. 交通运输工程学报, 2025, 25(5): 53-64. doi: 10.19818/j.cnki.1671-1637.2025.05.005
引用本文: 刘刚, 钱振东, 陈磊磊, 陆国阳, NG Shiu Tong Thomas. 自流平环氧沥青混凝土制备及其拌和摊铺期流变性能研究[J]. 交通运输工程学报, 2025, 25(5): 53-64. doi: 10.19818/j.cnki.1671-1637.2025.05.005
LIU Gang, QIAN Zhen-dong, CHEN Lei-lei, LU Guo-yang, NG Shiu Tong Thomas. Preparation of self-leveling epoxy asphalt concrete and its rheological properties during mixing and paving periods[J]. Journal of Traffic and Transportation Engineering, 2025, 25(5): 53-64. doi: 10.19818/j.cnki.1671-1637.2025.05.005
Citation: LIU Gang, QIAN Zhen-dong, CHEN Lei-lei, LU Guo-yang, NG Shiu Tong Thomas. Preparation of self-leveling epoxy asphalt concrete and its rheological properties during mixing and paving periods[J]. Journal of Traffic and Transportation Engineering, 2025, 25(5): 53-64. doi: 10.19818/j.cnki.1671-1637.2025.05.005

自流平环氧沥青混凝土制备及其拌和摊铺期流变性能研究

doi: 10.19818/j.cnki.1671-1637.2025.05.005
基金项目: 

国家自然科学基金项目 52178419

详细信息
    作者简介:

    刘刚(1994-),男,安徽阜阳人,威斯康星大学麦迪逊分校副研究员,工学博士,从事路面材料与智慧道路研究

    通讯作者:

    钱振东(1969-),女,江苏南通人,东南大学教授,工学博士

  • 中图分类号: U416.2

Preparation of self-leveling epoxy asphalt concrete and its rheological properties during mixing and paving periods

Funds: 

National Natural Science Foundation of China 52178419

More Information
    Corresponding author: QIAN Zhen-dong (1969-), female, professor, PhD, qianzd@seu.edu.cn
Article Text (Baidu Translation)
  • 摘要:

    为满足桥面沥青铺装预制装配和服役性能需求,在浇注式沥青混凝土和环氧沥青混凝土的基础上提出了自流平环氧沥青混凝土(SLEA)的平衡设计方法和制备流程,探究了不同级配和油石比对SLEA流动性能和力学强度的影响规律,分析了拌和摊铺期SLEA的流变性能;根据Bingham塑性流体力学特性定义了SLEA的广义拌和黏度,考虑集料形貌特征针片状指数、分形维数、级配组成特征形状参数和尺度参数建立了SLEA拌和摊铺期流变性能的预估模型。研究结果表明:细、中、粗级配的SLEA10流动性(200 ℃)分别为15、25、32 s, 贯入度(60 ℃)分别为245、233、228(0.01 mm),均大于规范要求,说明其具有良好流动性和力学强度,能够满足预制装配和服役性能需求;级配对SLEA10流动性影响较大,对其强度影响较小,流动性主要取决于级配粗细和集料特征,而成型后强度主要取决于环氧沥青固化,级配粗细影响程度较小;建立的广义拌和黏度预估模型实测值和拟合值的决定系数达到0.94,说明该模型能够有效预估其流变性能;基于分析结果,建议选择尺寸规则、表面粗糙度较小、级配较细的集料类型,以实现其自流平免碾压功能。

     

  • 图  1  SLEA配合比平衡设计流程

    Figure  1.  Balanced design flow of SLEA mixed ratio

    图  2  SLEA性能试验

    Figure  2.  SLEA performance tests

    图  3  SLEA拌和扭矩实时采集

    Figure  3.  Mixing torque real-time collection of SLEA

    图  4  SLEA拌和扭矩-时间变化曲线

    Figure  4.  Mixing torque-time variation curve of SLEA

    图  5  不同转动速率下SLEA的名义拌和扭矩

    Figure  5.  Nominal mixing torque of SLEA at different rotation rates

    图  6  针片状颗粒测量方法

    Figure  6.  Measurement method of needle-flake particles

    图  7  集料颗粒盒子数划分原理

    Figure  7.  Division principle of aggregate particle box number

    图  8  装有集料的格栅盒及X-CT扫描

    Figure  8.  Grid box with aggregates and X-CT scan

    图  9  集料颗粒典型CT图像

    Figure  9.  Typical CT images of aggregate particles

    图  10  集料形貌参数、级配组成参数和G的相关性

    Figure  10.  Correlation between aggregate morphology parameters, gradation composition parameters and G

    图  11  G拟合值和实测值对比

    Figure  11.  Comparison of fitted and measured G values

    表  1  A级70#道路沥青主要技术性能

    Table  1.   Main technical properties of A grade 70# asphalt

    检测项目 技术指标 检测结果 试验方法
    密度(15 ℃)/ (g·cm-3) 1.023 JTG E20—2011 T0603
    针入度(25 ℃)/ (0.1 mm) 60~80 65 JTG E20—2011 T0604
    针入度指数 -1.5±1.0 0.70 JTG E20—2011 T0604
    软化点/℃ ≥46 46.8 JTG E20—2011 T0606
    延度(温度10 ℃, 拉伸速度5 cm·min-1)/cm ≥35 49 JTG E20—2011 T0605
    延度(温度15 ℃, 拉伸速度5 cm·min-1)/cm ≥100 >100 JTG E20—2011 T0605
    闪点/℃ ≥260 295 JTG E20—2011 T0611
    动力黏度(60 ℃)/ (Pa·s) ≥180 188.9 JTG E20—2011 T0620
    滚动薄膜烘箱试验163 ℃ 质量损失/% ≤±0.8 0.055 JTG E20—2011 T0610
    针入度比(25 ℃)/% ≥61 74
    延度(10 ℃)/cm ≥6 9
    下载: 导出CSV

    表  2  环氧树脂主要技术性能

    Table  2.   Main technical properties of epoxy resin

    检测项目 技术指标 检测结果 试验方法
    环氧当量 187 GB/T 4612—2008
    主剂黏度/(Pa·s) 3 473 GB/T 22314—2008
    固化剂黏度/(Pa·s) 681
    固化时间(170 ℃)/min 43 GB/T 16777—2008
    拉伸强度(23 ℃)/MPa ≥3.0 3.89 GB/T 2567—2008
    断裂伸长率(23 ℃)/% ≥100 133
    吸水率/% ≤0.3 0.1 GB/T 1457—2008
    下载: 导出CSV

    表  3  SLEA不同级配通过率

    Table  3.   Passing percentage of different SLEA gradations

    筛孔尺寸/mm 13.2 9.5 4.75 2.36 1.18 0.6 0.3 0.15 0.075
    通过率/% 级配上限 100.0 100.0 80.0 63.0 52.0 46.0 40.0 36.0 30.0
    级配下限 100.0 80.0 63.0 48.0 38.0 32.0 27.0 24.0 20.0
    级配中值 100.0 90.0 71.5 55.5 45.0 39.0 33.5 30.0 25.0
    细级配 100.0 99.8 79.2 61.9 51.6 45.3 38.9 35.6 29.3
    中级配 100.0 90.6 70.3 56.6 44.2 38.4 33.3 29.5 24.2
    粗级配 100.0 80.6 63.3 48.6 38.2 32.4 27.3 24.5 20.2
    下载: 导出CSV

    表  4  不同级配的SLEA10沥青混凝土性能检测结果

    Table  4.   Performance test results of SLEA10 asphalt concrete with different gradations

    检测项目 技术指标 细级配 中级配 粗级配 试验方法
    流动性(200 ℃)/s ≤50 15 25 32 JTG/T 3364-02—2019附录G
    贯入度(60 ℃)/(0.01 mm) 100~350 245 233 228 JTG/T 3364-02—2019附录J
    贯入度增量(60 ℃)/(0.01 mm) ≤35 20 19 17
    下载: 导出CSV

    表  5  不同油石比下SLEA10性能检测结果

    Table  5.   Performance test results of SLEA10 under different asphalt-aggregate ratios

    检测项目 技术指标 油石比 试验方法
    7.6% 7.8% 8.0% 8.2% 8.4%
    流动性(200 ℃)/s ≤50 28 21 15 13 12 JTG/T 3364-02—2019附录G
    贯入度(60 ℃)/(0.01 mm) 100~350 182 221 245 311 346 JTG/T 3364-02—2019附录J
    贯入度增量(60 ℃)/(0.01 mm) ≤35 17 18 20 36 44
    动稳定度(60 ℃)/(次·mm) ≥350 1 669 1 546 1 458 1 339 1 265 JTG E20—2011 T0719
    弯曲极限应变/10-6 ≥3500 3 586 3 618 3 762 3 846 3 897 JTG E20—2011 T0715
    下载: 导出CSV

    表  6  每种集料9组不同的级配组成

    Table  6.   Nine different sets of gradation compositions for each type of aggregate

    编号 最大公称粒径/mm 粗细
    1 13.20
    2 13.20
    3 13.20
    4 9.50
    5 9.50
    6 9.50
    7 4.75
    8 4.75
    9 4.75
    下载: 导出CSV

    表  7  模型参数拟合结果

    Table  7.   Fitting results of model parameters

    系数 取值 标准误差 相关性
    M -0.077 78 0.007 02 0.998 44
    A 0.017 85 0.006 38 0.999 47
    B 0.036 79 0.006 57 0.999 51
    C 2.440 17 1.336 56 0.999 16
    D 1.249 73 0.763 56 0.998 02
    Q -12.724 63 3.145 35 0.999 44
    下载: 导出CSV
  • [1] LIU G, QIAN Z D, WU X Y, et al. Investigation on the compaction process of steel bridge deck pavement based on DEM-FEM coupling model[J]. International Journal of Pavement Engineering, 2023, 24(1): 2169443. doi: 10.1080/10298436.2023.2169443
    [2] LIU G, QIAN Z D, WU X Y, et al. Influence of weld seam on the compaction characteristics of steel bridge deck pavement asphalt mixture[J]. Construction and Building Materials, 2022, 347: 128564. doi: 10.1016/j.conbuildmat.2022.128564
    [3] 刘泽鑫. 装配式水泥混凝土路面板块结构设计与数值模拟优化[D]. 西安: 长安大学, 2021.

    LIU Ze-xin. The structure design and numerical simulation optimization of precast cement concrete pavement slabs[D]. Xi'an: Chang'an University, 2021.
    [4] FANG M J, ZHOU R, KE W H, et al. Precast system and assembly connection of cement concrete slabs for road pavement: a review[J]. Journal of Traffic and Transportation Engineering (English Edition), 2022, 9(2): 208-222. doi: 10.1016/j.jtte.2021.10.003
    [5] HOUBEN L J M, VAN DER KOOIJ J, NAUS R W M, et al. APT testing of modular pavement structure "Rollpave" and comparison with conventional asphalt motorway structures[C]//TRB. 2nd International Conference on Accelerated Pavement Testing. Washington DC: TRB, 2004: 1-24.
    [6] SHOJAEI M, ISFAHANI H S, ABTAHI S M. Experimental investigation on durability of prefabricated rollable asphalt: Creep and fatigue performance evaluation[J]. Case Studies in Construction Materials, 2024, 21: e03527. doi: 10.1016/j.cscm.2024.e03527
    [7] 董元帅. 可卷曲预制沥青路面材料特性与施工工艺研究[D]. 南京: 东南大学, 2015.

    DONG Yuan-shuai. Study on material properties and construction technologies of rollable prefabricated asphalt pavement[D]. Nanjing: Southeast University, 2015.
    [8] 冯志炫. 应用于沙漠公路的装配式沥青路面力学分析[D]. 广州: 华南理工大学, 2016.

    FENG Zhi-xuan. Mechanical behavior of separable precast airfield pavement applied to the desert highway[D]. Guangzhou: South China University of Technology, 2016.
    [9] ZHANG H T, WU J, FU X X, et al. Comparative study on mechanical characteristics of precast HMA block versus concrete block[J]. International Journal of Pavement Engineering, 2020, 21(5): 549-558. doi: 10.1080/10298436.2018.1497799
    [10] LIU G, QIAN Z D, WU X Y, et al. Stress responses analysis of asphalt mixture particles based on average principle during the rolling compaction process of weld SBDP[J]. Construction and Building Materials, 2023, 400: 132805. doi: 10.1016/j.conbuildmat.2023.132805
    [11] 钱振东, 金磊, 郑彧. 浇注式沥青混合料抗剪强度及标准研究[J]. 湖南大学学报(自然科学版), 2015, 42(5): 107-112.

    QIAN Zhen-dong, JIN Lei, ZHENG Yu. Research on the shear strength and standard of Gussasphalt[J]. Journal of Huan University (Natural Sciences), 2015, 42(5): 107-112.
    [12] 钱振东, 刘阳, 杨亚林, 等. 沥青混凝土高温摊铺下钢梁支座体系温度效应[J]. 中国公路学报, 2022, 35(8): 194-201.

    QIAN Zhen-dong, LIU Yang, YANG Ya-lin, et al. Temperature effect analysis of bridge bearings in a steel beam during high-temperature asphalt concrete pavement paving[J]. China Journal of Highway and Transport, 2022, 35(8): 194-201.
    [13] 黄卫, 钱振东, 程刚, 等. 大跨径钢桥面环氧沥青混凝土铺装研究[J]. 科学通报, 2002, 47(24): 1894-1897.

    HUANG Wei, QIAN Zhen-dong, CHENG Gang, et al. Research on epoxy asphalt concrete paving for large-span steel bridge decks[J]. Chinese Science Bulletin, 2002, 47(24): 1894-1897.
    [14] 况栋梁, 赵喆, 吴永畅, 等. 环氧树脂在道路工程中的应用研究进展[J]. 长安大学学报(自然科学版), 2024, 44(3): 1-19.

    KUANG Dong-liang, ZHAO Zhe, WU Yong-chang, et al. Research progress of epoxy resin application in road engineering[J]. Journal of Chang'an University (Natural Science Edition), 2024, 44(3): 1-19.
    [15] LIU G, QIAN Z D, XUE Y C. Comprehensive feasibility evaluation of a high-performance mixture used as the protective course of steel bridge deck pavement[J]. Construction and Building Materials, 2022, 322: 126419. doi: 10.1016/j.conbuildmat.2022.126419
    [16] CHEN L L, LIU G, PAN G S, et al. Investigation on the pore water pressure in steel bridge deck pavement under the coupling effect of water and vehicle load[J]. Construction and Building Materials, 2023, 409: 134021. doi: 10.1016/j.conbuildmat.2023.134021
    [17] 马涛, 栾英成, 何亮, 等. 乳化沥青与泡沫沥青冷再生技术发展综述[J]. 交通运输工程学报, 2023, 23(2): 1-23. doi: 10.19818/j.cnki.1671-1637.2023.02.001

    MA Tao, LUAN Ying-cheng, HE Liang, et al. Review on cold recycling technology development of emulsified asphalt and foamed asphalt[J]. Journal of Traffic and Transportation Engineering, 2023, 23(2): 1-23. doi: 10.19818/j.cnki.1671-1637.2023.02.001
    [18] 梁波, 廖威, 郑健龙. 改性剂与沥青相容性作用中分子动力学模拟综述[J]. 交通运输工程学报, 2024, 24(5): 54-85. doi: 10.19818/j.cnki.1671-1637.2024.05.005

    LIANG Bo, LIAO Wei, ZHENG Jian-long. Review on molecular dynamics simulation for compatibilities of modifiers with asphalt[J]. Journal of Traffic and Transportation Engineering, 2024, 24(5): 54-85. doi: 10.19818/j.cnki.1671-1637.2024.05.005
    [19] 葛冬冬, 姜向阳, 吕松涛, 等. 干法橡胶沥青混合料研究综述: 材料、机理、设计与性能[J]. 交通运输工程学报, 2025, 25(4): 1-27. doi: 10.19818/j.cnki.1671-1637.2025.04.001

    GE Dong-dong, JIANG Xiang-yang, LYU Song-tao, et al. Research review of dry process rubberized asphalt mixtures: materials, mechanism, design, and performance[J]. Journal of Traffic and Transportation Engineering, 2025, 25(4): 1-27. doi: 10.19818/j.cnki.1671-1637.2025.04.001
    [20] DALHAT M A, AL-ADHAM K. Review on laboratory preparation processes of polymer modified asphalt binder[J]. Journal of Traffic and Transportation Engineering (English Edition), 2023, 10(2): 159-184. doi: 10.1016/j.jtte.2023.01.002
    [21] SYED A, SONPAROTE R. A review of precast concrete pavement technology[J]. The Baltic Journal of Road and Bridge Engineering, 2020, 15(4): 22-53. doi: 10.7250/bjrbe.2020-15.493
    [22] SENSENEY C T, SMITH P J, SNYDER M B. Precast concrete paving repairs at Vancouver international airport[J]. Transportation Research Record: Journal of the Transportation Research Board, 2021(2675): 439-448.
    [23] HESAMI E, BIRGISSON B, KRINGOS N. Effect of mixing sequence on the workability and performance of asphalt mixtures[J]. Road Materials and Pavement Design, 2015, 16(S2): 197-213.
    [24] SANAHUJA S, UPADHYAY R, BRIESEN H, et al. Spectral analysis of the stick-slip phenomenon in "oral" tribological texture evaluation[J]. Journal of Texture Studies, 2017, 48(4): 318-334. doi: 10.1111/jtxs.12266
    [25] ERDOGAN S T, FOWLER D W. Determination of aggregate shape properties using X-ray tomographic methods and the effect of shape on concrete rheology[R]. Austin: International Center for Aggregates Research, 2005.
    [26] MAURYA A, TIWARI N, CHHABRA R P. Forced convective flow of Bingham plastic fluids in a branching channel with the effect of T-channel branching angle[J]. Journal of Fluids Engineering, 2021, 143(5): 051201. doi: 10.1115/1.4049673
    [27] BHUSHAN B. Modern tribology handbook, two volume set[M]. Boca Raton: CRC Press, 2000.
    [28] HUANG Q B, QIAN Z D, YANG Y M, et al. Investigation of warm mix epoxy asphalt compaction with gyratory compactor and charge coupled photoelectric imaging[J]. Construction and Building Materials, 2021, 271: 121506. doi: 10.1016/j.conbuildmat.2020.121506
    [29] 纪伦, 刘海权, 张磊, 等. 粗集料针片状含量对沥青混合料结构影响[J]. 哈尔滨工业大学学报, 2018, 50(9): 40-46.

    JI Lun, LIU Hai-quan, ZHANG Lei, et al. Effects of flat and elongated particles content in coarse aggregate on asphalt mixture structure[J]. Journal of Harbin Institute of Technology, 2018, 50(9): 40-46.
    [30] MASAD E, BUTTON J W, PAPAGIANNAKIS T. Fine-aggregate angularity: automated image analysis approach[J]. Transportation Research Record: Journal of the Transportation Research Board, 2000(1721): 66-72.
    [31] 胡靖. 基于沥青混凝土三维细观结构的路面性能及安全评估研究[D]. 南京: 东南大学, 2015.

    HU Jing. Research on performance and security evaluation of pavement based on three-dimensional microscopic structure of asphalt concrete[D]. Nanjing: Southeast University, 2015.
    [32] REZAEI A, MASAD E. Experimental-based model for predicting the skid resistance of asphalt pavements[J]. International Journal of Pavement Engineering, 2013, 14(1): 24-35. doi: 10.1080/10298436.2011.643793
  • 加载中
图(11) / 表(7)
计量
  • 文章访问数:  65
  • HTML全文浏览量:  31
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-05
  • 录用日期:  2025-03-12
  • 修回日期:  2024-12-03
  • 刊出日期:  2025-10-28

目录

    /

    返回文章
    返回