Preparation of self-leveling epoxy asphalt concrete and its rheological properties during mixing and paving periods
-
摘要:
为满足桥面沥青铺装预制装配和服役性能需求,在浇注式沥青混凝土和环氧沥青混凝土的基础上提出了自流平环氧沥青混凝土(SLEA)的平衡设计方法和制备流程,探究了不同级配和油石比对SLEA流动性能和力学强度的影响规律,分析了拌和摊铺期SLEA的流变性能;根据Bingham塑性流体力学特性定义了SLEA的广义拌和黏度,考虑集料形貌特征针片状指数、分形维数、级配组成特征形状参数和尺度参数建立了SLEA拌和摊铺期流变性能的预估模型。研究结果表明:细、中、粗级配的SLEA10流动性(200 ℃)分别为15、25、32 s, 贯入度(60 ℃)分别为245、233、228(0.01 mm),均大于规范要求,说明其具有良好流动性和力学强度,能够满足预制装配和服役性能需求;级配对SLEA10流动性影响较大,对其强度影响较小,流动性主要取决于级配粗细和集料特征,而成型后强度主要取决于环氧沥青固化,级配粗细影响程度较小;建立的广义拌和黏度预估模型实测值和拟合值的决定系数达到0.94,说明该模型能够有效预估其流变性能;基于分析结果,建议选择尺寸规则、表面粗糙度较小、级配较细的集料类型,以实现其自流平免碾压功能。
-
关键词:
- 路面工程 /
- 预制装配 /
- 平衡设计方法 /
- 自流平环氧沥青混凝土 /
- 流变性能预估模型
Abstract:To meet the precast assembly and service performance demands of bridge deck asphalt pavements (BDAP), the balance design method and development procedures of self-leveling epoxy asphalt concrete (SLEA) were proposed based on guss asphalt concrete and epoxy asphalt concrete. The effects of different gradations and asphalt-aggregate ratios on the flowability and mechanical strength of SLEA were investigated. The rheological properties of SLEA during the mixing and paving periods were analyzed. Based on Bingham's plastic fluid mechanics properties, the generalized mixing viscosity of SLEA was defined. Considering aggregate morphological features including needle flake index, fractal dimension, as well as gradation composition characteristics including shape parameters and scale parameters, a prediction model for the rheological properties of SLEA during mixing and paving periods was built. Research results show that the flowability (at 200 ℃) of fine, medium, and coarse-graded SLEA10 is 15, 25, and 32 s, respectively, while the penetration (at 60 ℃) reaches 245, 233, and 228 (0.01 mm). All values exceed the specification requirements, demonstrating excellent flowability and mechanical strength to meet precast assembly and service performance demands. Gradation significantly influences SLEA10 flowability but has relatively small influences on its strength. The flowability mainly depends on the gradation fineness and aggregate characteristics, while the strength after molding mainly depends on the consolidation of epoxy asphalt, with gradation fineness playing a minor role. The established prediction model of generalized mixing viscosity achieves an determination coefficient of 0.94 between measured values and fitted values, demonstrating its effectiveness in predicting rheological properties. Based on the analysis results, it is recommended to choose the aggregates with regular size, low surface roughness, and finer gradation to realize the self-leveling and compaction-free function.
-
表 1 A级70#道路沥青主要技术性能
Table 1. Main technical properties of A grade 70# asphalt
检测项目 技术指标 检测结果 试验方法 密度(15 ℃)/ (g·cm-3) 1.023 JTG E20—2011 T0603 针入度(25 ℃)/ (0.1 mm) 60~80 65 JTG E20—2011 T0604 针入度指数 -1.5±1.0 0.70 JTG E20—2011 T0604 软化点/℃ ≥46 46.8 JTG E20—2011 T0606 延度(温度10 ℃, 拉伸速度5 cm·min-1)/cm ≥35 49 JTG E20—2011 T0605 延度(温度15 ℃, 拉伸速度5 cm·min-1)/cm ≥100 >100 JTG E20—2011 T0605 闪点/℃ ≥260 295 JTG E20—2011 T0611 动力黏度(60 ℃)/ (Pa·s) ≥180 188.9 JTG E20—2011 T0620 滚动薄膜烘箱试验163 ℃ 质量损失/% ≤±0.8 0.055 JTG E20—2011 T0610 针入度比(25 ℃)/% ≥61 74 延度(10 ℃)/cm ≥6 9 表 2 环氧树脂主要技术性能
Table 2. Main technical properties of epoxy resin
检测项目 技术指标 检测结果 试验方法 环氧当量 187 GB/T 4612—2008 主剂黏度/(Pa·s) 3 473 GB/T 22314—2008 固化剂黏度/(Pa·s) 681 固化时间(170 ℃)/min 43 GB/T 16777—2008 拉伸强度(23 ℃)/MPa ≥3.0 3.89 GB/T 2567—2008 断裂伸长率(23 ℃)/% ≥100 133 吸水率/% ≤0.3 0.1 GB/T 1457—2008 表 3 SLEA不同级配通过率
Table 3. Passing percentage of different SLEA gradations
筛孔尺寸/mm 13.2 9.5 4.75 2.36 1.18 0.6 0.3 0.15 0.075 通过率/% 级配上限 100.0 100.0 80.0 63.0 52.0 46.0 40.0 36.0 30.0 级配下限 100.0 80.0 63.0 48.0 38.0 32.0 27.0 24.0 20.0 级配中值 100.0 90.0 71.5 55.5 45.0 39.0 33.5 30.0 25.0 细级配 100.0 99.8 79.2 61.9 51.6 45.3 38.9 35.6 29.3 中级配 100.0 90.6 70.3 56.6 44.2 38.4 33.3 29.5 24.2 粗级配 100.0 80.6 63.3 48.6 38.2 32.4 27.3 24.5 20.2 表 4 不同级配的SLEA10沥青混凝土性能检测结果
Table 4. Performance test results of SLEA10 asphalt concrete with different gradations
检测项目 技术指标 细级配 中级配 粗级配 试验方法 流动性(200 ℃)/s ≤50 15 25 32 JTG/T 3364-02—2019附录G 贯入度(60 ℃)/(0.01 mm) 100~350 245 233 228 JTG/T 3364-02—2019附录J 贯入度增量(60 ℃)/(0.01 mm) ≤35 20 19 17 表 5 不同油石比下SLEA10性能检测结果
Table 5. Performance test results of SLEA10 under different asphalt-aggregate ratios
检测项目 技术指标 油石比 试验方法 7.6% 7.8% 8.0% 8.2% 8.4% 流动性(200 ℃)/s ≤50 28 21 15 13 12 JTG/T 3364-02—2019附录G 贯入度(60 ℃)/(0.01 mm) 100~350 182 221 245 311 346 JTG/T 3364-02—2019附录J 贯入度增量(60 ℃)/(0.01 mm) ≤35 17 18 20 36 44 动稳定度(60 ℃)/(次·mm) ≥350 1 669 1 546 1 458 1 339 1 265 JTG E20—2011 T0719 弯曲极限应变/10-6 ≥3500 3 586 3 618 3 762 3 846 3 897 JTG E20—2011 T0715 表 6 每种集料9组不同的级配组成
Table 6. Nine different sets of gradation compositions for each type of aggregate
编号 最大公称粒径/mm 粗细 1 13.20 细 2 13.20 中 3 13.20 粗 4 9.50 细 5 9.50 中 6 9.50 粗 7 4.75 细 8 4.75 中 9 4.75 粗 表 7 模型参数拟合结果
Table 7. Fitting results of model parameters
系数 取值 标准误差 相关性 M -0.077 78 0.007 02 0.998 44 A 0.017 85 0.006 38 0.999 47 B 0.036 79 0.006 57 0.999 51 C 2.440 17 1.336 56 0.999 16 D 1.249 73 0.763 56 0.998 02 Q -12.724 63 3.145 35 0.999 44 -
[1] LIU G, QIAN Z D, WU X Y, et al. Investigation on the compaction process of steel bridge deck pavement based on DEM-FEM coupling model[J]. International Journal of Pavement Engineering, 2023, 24(1): 2169443. doi: 10.1080/10298436.2023.2169443 [2] LIU G, QIAN Z D, WU X Y, et al. Influence of weld seam on the compaction characteristics of steel bridge deck pavement asphalt mixture[J]. Construction and Building Materials, 2022, 347: 128564. doi: 10.1016/j.conbuildmat.2022.128564 [3] 刘泽鑫. 装配式水泥混凝土路面板块结构设计与数值模拟优化[D]. 西安: 长安大学, 2021.LIU Ze-xin. The structure design and numerical simulation optimization of precast cement concrete pavement slabs[D]. Xi'an: Chang'an University, 2021. [4] FANG M J, ZHOU R, KE W H, et al. Precast system and assembly connection of cement concrete slabs for road pavement: a review[J]. Journal of Traffic and Transportation Engineering (English Edition), 2022, 9(2): 208-222. doi: 10.1016/j.jtte.2021.10.003 [5] HOUBEN L J M, VAN DER KOOIJ J, NAUS R W M, et al. APT testing of modular pavement structure "Rollpave" and comparison with conventional asphalt motorway structures[C]//TRB. 2nd International Conference on Accelerated Pavement Testing. Washington DC: TRB, 2004: 1-24. [6] SHOJAEI M, ISFAHANI H S, ABTAHI S M. Experimental investigation on durability of prefabricated rollable asphalt: Creep and fatigue performance evaluation[J]. Case Studies in Construction Materials, 2024, 21: e03527. doi: 10.1016/j.cscm.2024.e03527 [7] 董元帅. 可卷曲预制沥青路面材料特性与施工工艺研究[D]. 南京: 东南大学, 2015.DONG Yuan-shuai. Study on material properties and construction technologies of rollable prefabricated asphalt pavement[D]. Nanjing: Southeast University, 2015. [8] 冯志炫. 应用于沙漠公路的装配式沥青路面力学分析[D]. 广州: 华南理工大学, 2016.FENG Zhi-xuan. Mechanical behavior of separable precast airfield pavement applied to the desert highway[D]. Guangzhou: South China University of Technology, 2016. [9] ZHANG H T, WU J, FU X X, et al. Comparative study on mechanical characteristics of precast HMA block versus concrete block[J]. International Journal of Pavement Engineering, 2020, 21(5): 549-558. doi: 10.1080/10298436.2018.1497799 [10] LIU G, QIAN Z D, WU X Y, et al. Stress responses analysis of asphalt mixture particles based on average principle during the rolling compaction process of weld SBDP[J]. Construction and Building Materials, 2023, 400: 132805. doi: 10.1016/j.conbuildmat.2023.132805 [11] 钱振东, 金磊, 郑彧. 浇注式沥青混合料抗剪强度及标准研究[J]. 湖南大学学报(自然科学版), 2015, 42(5): 107-112.QIAN Zhen-dong, JIN Lei, ZHENG Yu. Research on the shear strength and standard of Gussasphalt[J]. Journal of Huan University (Natural Sciences), 2015, 42(5): 107-112. [12] 钱振东, 刘阳, 杨亚林, 等. 沥青混凝土高温摊铺下钢梁支座体系温度效应[J]. 中国公路学报, 2022, 35(8): 194-201.QIAN Zhen-dong, LIU Yang, YANG Ya-lin, et al. Temperature effect analysis of bridge bearings in a steel beam during high-temperature asphalt concrete pavement paving[J]. China Journal of Highway and Transport, 2022, 35(8): 194-201. [13] 黄卫, 钱振东, 程刚, 等. 大跨径钢桥面环氧沥青混凝土铺装研究[J]. 科学通报, 2002, 47(24): 1894-1897.HUANG Wei, QIAN Zhen-dong, CHENG Gang, et al. Research on epoxy asphalt concrete paving for large-span steel bridge decks[J]. Chinese Science Bulletin, 2002, 47(24): 1894-1897. [14] 况栋梁, 赵喆, 吴永畅, 等. 环氧树脂在道路工程中的应用研究进展[J]. 长安大学学报(自然科学版), 2024, 44(3): 1-19.KUANG Dong-liang, ZHAO Zhe, WU Yong-chang, et al. Research progress of epoxy resin application in road engineering[J]. Journal of Chang'an University (Natural Science Edition), 2024, 44(3): 1-19. [15] LIU G, QIAN Z D, XUE Y C. Comprehensive feasibility evaluation of a high-performance mixture used as the protective course of steel bridge deck pavement[J]. Construction and Building Materials, 2022, 322: 126419. doi: 10.1016/j.conbuildmat.2022.126419 [16] CHEN L L, LIU G, PAN G S, et al. Investigation on the pore water pressure in steel bridge deck pavement under the coupling effect of water and vehicle load[J]. Construction and Building Materials, 2023, 409: 134021. doi: 10.1016/j.conbuildmat.2023.134021 [17] 马涛, 栾英成, 何亮, 等. 乳化沥青与泡沫沥青冷再生技术发展综述[J]. 交通运输工程学报, 2023, 23(2): 1-23. doi: 10.19818/j.cnki.1671-1637.2023.02.001MA Tao, LUAN Ying-cheng, HE Liang, et al. Review on cold recycling technology development of emulsified asphalt and foamed asphalt[J]. Journal of Traffic and Transportation Engineering, 2023, 23(2): 1-23. doi: 10.19818/j.cnki.1671-1637.2023.02.001 [18] 梁波, 廖威, 郑健龙. 改性剂与沥青相容性作用中分子动力学模拟综述[J]. 交通运输工程学报, 2024, 24(5): 54-85. doi: 10.19818/j.cnki.1671-1637.2024.05.005LIANG Bo, LIAO Wei, ZHENG Jian-long. Review on molecular dynamics simulation for compatibilities of modifiers with asphalt[J]. Journal of Traffic and Transportation Engineering, 2024, 24(5): 54-85. doi: 10.19818/j.cnki.1671-1637.2024.05.005 [19] 葛冬冬, 姜向阳, 吕松涛, 等. 干法橡胶沥青混合料研究综述: 材料、机理、设计与性能[J]. 交通运输工程学报, 2025, 25(4): 1-27. doi: 10.19818/j.cnki.1671-1637.2025.04.001GE Dong-dong, JIANG Xiang-yang, LYU Song-tao, et al. Research review of dry process rubberized asphalt mixtures: materials, mechanism, design, and performance[J]. Journal of Traffic and Transportation Engineering, 2025, 25(4): 1-27. doi: 10.19818/j.cnki.1671-1637.2025.04.001 [20] DALHAT M A, AL-ADHAM K. Review on laboratory preparation processes of polymer modified asphalt binder[J]. Journal of Traffic and Transportation Engineering (English Edition), 2023, 10(2): 159-184. doi: 10.1016/j.jtte.2023.01.002 [21] SYED A, SONPAROTE R. A review of precast concrete pavement technology[J]. The Baltic Journal of Road and Bridge Engineering, 2020, 15(4): 22-53. doi: 10.7250/bjrbe.2020-15.493 [22] SENSENEY C T, SMITH P J, SNYDER M B. Precast concrete paving repairs at Vancouver international airport[J]. Transportation Research Record: Journal of the Transportation Research Board, 2021(2675): 439-448. [23] HESAMI E, BIRGISSON B, KRINGOS N. Effect of mixing sequence on the workability and performance of asphalt mixtures[J]. Road Materials and Pavement Design, 2015, 16(S2): 197-213. [24] SANAHUJA S, UPADHYAY R, BRIESEN H, et al. Spectral analysis of the stick-slip phenomenon in "oral" tribological texture evaluation[J]. Journal of Texture Studies, 2017, 48(4): 318-334. doi: 10.1111/jtxs.12266 [25] ERDOGAN S T, FOWLER D W. Determination of aggregate shape properties using X-ray tomographic methods and the effect of shape on concrete rheology[R]. Austin: International Center for Aggregates Research, 2005. [26] MAURYA A, TIWARI N, CHHABRA R P. Forced convective flow of Bingham plastic fluids in a branching channel with the effect of T-channel branching angle[J]. Journal of Fluids Engineering, 2021, 143(5): 051201. doi: 10.1115/1.4049673 [27] BHUSHAN B. Modern tribology handbook, two volume set[M]. Boca Raton: CRC Press, 2000. [28] HUANG Q B, QIAN Z D, YANG Y M, et al. Investigation of warm mix epoxy asphalt compaction with gyratory compactor and charge coupled photoelectric imaging[J]. Construction and Building Materials, 2021, 271: 121506. doi: 10.1016/j.conbuildmat.2020.121506 [29] 纪伦, 刘海权, 张磊, 等. 粗集料针片状含量对沥青混合料结构影响[J]. 哈尔滨工业大学学报, 2018, 50(9): 40-46.JI Lun, LIU Hai-quan, ZHANG Lei, et al. Effects of flat and elongated particles content in coarse aggregate on asphalt mixture structure[J]. Journal of Harbin Institute of Technology, 2018, 50(9): 40-46. [30] MASAD E, BUTTON J W, PAPAGIANNAKIS T. Fine-aggregate angularity: automated image analysis approach[J]. Transportation Research Record: Journal of the Transportation Research Board, 2000(1721): 66-72. [31] 胡靖. 基于沥青混凝土三维细观结构的路面性能及安全评估研究[D]. 南京: 东南大学, 2015.HU Jing. Research on performance and security evaluation of pavement based on three-dimensional microscopic structure of asphalt concrete[D]. Nanjing: Southeast University, 2015. [32] REZAEI A, MASAD E. Experimental-based model for predicting the skid resistance of asphalt pavements[J]. International Journal of Pavement Engineering, 2013, 14(1): 24-35. doi: 10.1080/10298436.2011.643793 -
下载: