LIU Ying, ZUO Dun-wen, WANG Yao-hua, ZHAO Jun, YAN Hai-chun, JI Chong, HE Ji-xian. Numerical simulation of airliner cabin door under explosion impact loading and reinforcement experiment[J]. Journal of Traffic and Transportation Engineering, 2011, 11(6): 50-55. doi: 10.19818/j.cnki.1671-1637.2011.06.008
Citation: LIU Ying, ZUO Dun-wen, WANG Yao-hua, ZHAO Jun, YAN Hai-chun, JI Chong, HE Ji-xian. Numerical simulation of airliner cabin door under explosion impact loading and reinforcement experiment[J]. Journal of Traffic and Transportation Engineering, 2011, 11(6): 50-55. doi: 10.19818/j.cnki.1671-1637.2011.06.008

Numerical simulation of airliner cabin door under explosion impact loading and reinforcement experiment

doi: 10.19818/j.cnki.1671-1637.2011.06.008
More Information
  • Author Bio:

    LIU Ying(1975-), female, lecturer, PhD, +86-25-80821492, lyshadow71@163.com

  • Received Date: 2011-07-18
  • Publish Date: 2011-12-25
  • A combination method of theoretical analysis, numerical simulation and model explosion test was used, the structure and stress state of airliner cabin door edge were analyzed, and the mechanical model was set up to describe the forced location of cabin door edge. Aimed at the forced location of door edge subjected to explosion impact loading, numerical simulation was put up by using the Explicit module of finite element software ABAQUS. The necessity and difficulties of door edge reinforcement were analyzed, reinforcement measures were proposed, and the results of explosion test and numerical simulation were compared. Analysis result shows that airliner cabin door edge cann't bear explosion impact loading, and must be reinforced. The mean thickness of pressure-reducing plates is 5 mm, the mean thickness of reinforcement plates is 6 mm, the total weight of reinforced members is 3.98 kg, and reinforcement measure is effective.

     

  • loading
  • [1]
    NEUBERGER A, P ELES S, R ITTEL D. Scaling the response of circular plates subjected to large and close-range spherical explosions. Part Ⅰ: air-blast loading[J]. International Journal of Impact Engineering, 2007, 34(5): 859-873. doi: 10.1016/j.ijimpeng.2006.04.001
    [2]
    BOYD S D. Acceleration of a plate subject to explosive blast loading-trial results[R]. Victoria: DSTO Aeronautical and Maritime Research Laboratory, 2004.
    [3]
    KIM K C, FRIES J C. Dynamic response analysis of GR/ EP composite panels under blast wave pressure loading[C] // AIAA. 46th AIAA/ ASME/ ASCE/ AHS/ ASC Structures, Structural Dynamics & Materials Conference, AIAA 2005-1838. Austin: AIAA, 2005: 469-482.
    [4]
    RAO Guo-ning, CHEN Wang-hua, HU Yi-ting, et al. Numerical simulation of the effect of blast loading of different explosives on a target[J]. Chinese Journal of Explosives &Propellants, 2007, 30(4): 9-12. (in Chinese) doi: 10.3969/j.issn.1007-7812.2007.04.003
    [5]
    WANG Li-li. On constitutive modeling in numerical simulation of explosion mechanics[J]. Explosion and Shock Waves, 2003, 23(2): 97-104. (in Chinese) doi: 10.3321/j.issn:1001-1455.2003.02.001
    [6]
    SHI Dang-yong, LIU Yong-cun, XU Jian-hua. Numerical simulation technology of explosive mechanics[J]. Engineering Blasting, 2005, 11(2): 10-13. (in Chinese) doi: 10.3969/j.issn.1006-7051.2005.02.003
    [7]
    WANG Bing, LONG Yuan, MA Hai-yang, et al. Tests on the explosion resistance capacity of non-metallic material[J]. Explosive Materials, 2010, 39(1): 37-40. (in Chinese) doi: 10.3969/j.issn.1001-8352.2010.01.013
    [8]
    XU Ding-hai, W ANG Shan, YANG Shi-quan. Numerical simulation analysis of contiguous explosion for plate-shell structure[J]. Journal of Harbin Engineering University, 2006, 27(1): 53-56. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG200601010.htm
    [9] ZHAO Hai-bo, YE Guo-zhuang, ZHANG Jian, et al. Numerical simulation of responses structure to explosive shock loading[J]. Journal of Shenyang Institute of Technology, 1997, 16(3): 39-45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BLDS202005002.htm
    [10]
    JIN Guang-qian, LIU Ying, XU Quan-jun, et al. Research on simulating and tesing on blasting noise of many linear shaped charge cutters[C] //China Ordnance Society. 8th International Symposium on Test & Measurement. Chongqing: International Academic Publishers Ltd., 2009: 540-544.
    [11]
    LIU Ying, LONG Yuan, JIN Guang-qian, et al. Study on application of wavelet and fractal theory on blasting seismic effect[C] //China Ordnance Society. 8th International Symposium on Test & Measurement. Chongqing: International Academic Publishers Ltd., 2009: 509-513.

Catalog

    Article Metrics

    Article views (735) PDF downloads(691) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return