ZHAO Jian-you, ZHOU Sun-feng, CUI Xiao-juan, WANG Gao-qing. Predictive method of highway freight volume based on fuzzy linear regression model[J]. Journal of Traffic and Transportation Engineering, 2012, 12(3): 80-85. doi: 10.19818/j.cnki.1671-1637.2012.03.012
Citation: ZHAO Jian-you, ZHOU Sun-feng, CUI Xiao-juan, WANG Gao-qing. Predictive method of highway freight volume based on fuzzy linear regression model[J]. Journal of Traffic and Transportation Engineering, 2012, 12(3): 80-85. doi: 10.19818/j.cnki.1671-1637.2012.03.012

Predictive method of highway freight volume based on fuzzy linear regression model

doi: 10.19818/j.cnki.1671-1637.2012.03.012
More Information
  • Author Bio:

    ZHAO Jian-you (1963-), male, professor, PhD, +86-29-82334371, jyzhao@chd.edu.cn

  • Received Date: 2012-01-09
  • Publish Date: 2012-06-25
  • The influence factors of highway freight volume were determined, such as GDP, population quantity, the total amount of social consuming retails and the output value of sideline products, and a predictive method of highway freight volume based on fuzzy linear regression model was set up.The highway freight hub planning in Yan'an City was taken as an example, the statistical freight volumes from 1995 to 2004 were taken as dependent variables, and the fuzzy coefficients of fuzzy linear regression model were determined.The statistical freight volumes from 2005 to 2010 were taken as verified values, and the goodness of fit for fuzzy linear regression model was analyzed.The predictive results among fuzzy linear regression model, exponential smoothing method, grey model and elastic coefficient method were compared.Analysis result shows that in the fuzzy linear regression model, the average value of t test is 0.673 07, which shows that the difference between predictive value and actual value is not significant, and the prediction effect is better.The average relative errors of four methods are 0.073 1, 0.100 3, 0.167 8, 0.232 9 respectively, so the error of predictive method is smallest.

     

  • loading
  • [1]
    AL-DEEK H M. Use of vessel freight data to forecast heavy truck movements at seaports[J]. Transportation Research Board, 2002 (1804): 217-224. doi: 10.3141/1804-29
    [2]
    GARRIDO R A, MAHMASSNI H S. Forecasting freight transportation demand with the space-time multinomial probit model[J]. Transportation Research Part B: Methodological, 2000, 34 (5): 403-418. doi: 10.1016/S0191-2615(99)00032-6
    [3]
    BABCOCK M W, LU Xiao-hua, NORTON J. Time series forecasting of quarterly railroad grain carloadings[J]. Trans-portation Research Part E: Logistics and Transportation Review, 1999, 35 (1): 43-57. doi: 10.1016/S1366-5545(98)00024-6
    [4]
    GODFREY G A, POWELL W B. An adaptive dynamic pro-gramming algorithm for dynamic fleet management, II: mul-tiperiod travel times[J]. Transportation Science, 2002, 36 (1): 40-54. doi: 10.1287/trsc.36.1.40.572
    [5]
    DANTAS A, YAMAMOTO K, LAMAR M V, et al. Neural network for ravel demand forecast using GIS and remote sensing[C]//University of Canterbury. Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. Como: University of Canterbury, 2000: 435-440.
    [6]
    CHIOU H K, TZENG G H, CHENG C K, et al. Grey pre-diction model for forecasting the planning material of equip-ment spare parts in navy of Taiwan[C]//National Chiao Tung University. Proceedings of the5th World Automation Congress. Hsinchu: National Chiao Tung University, 2004: 315-320.
    [7]
    YANG Ming, QIN Hua-rong, CHEN Yin-san. Structure analysis and calculation method of freight turnover for regional highway[J]. Journal of Traffic and Transportation Engineer-ing, 2011, 11 (5): 93-100. (in Chinese). http://transport.chd.edu.cn/article/id/201105015
    [8]
    CUI Shu-hua, WANG Na, HU Ya-nan. Influencing factors of forecasting highway fright volume based on principal com-ponents analysis[J]. Forest Engineering, 2005, 21 (5): 65-67. (in Chinese). doi: 10.3969/j.issn.1001-005X.2005.05.025
    [9]
    REN Qi-liang. Study on application of grey-Markov model to forecasting elastic coefficients in highway transportation vol-ume[J]. Journal of Chongqing Jiaotong University: Natural Science, 2009, 28 (2): 290-293. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT200902031.htm
    [10]
    TIAN Zhi-hui, WANG Shi-jie. Research on the forecast of the highway traffic volume based on the theory of the four stages forecast[J]. Journal of Zhengzhou University: Engineering Science, 2008, 29 (3): 133-136. (in Chinese). doi: 10.3969/j.issn.1671-6833.2008.03.034
    [11]
    WEI Yan-qiang, LIU Hai-lin, NING Hong-yun. Measure-ment study of highway transportation volume forecast based on RBF neural network[J]. Journal of Tianjin University of Technology, 2008, 24 (1): 17-20. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TEAR200801005.htm
    [12]
    ZHOU Zhi-juan, CHEN Sen-fa. Combination forecasting method of highway freight volume forecasting in our country[J]. China Water Transport, 2010, 10 (5): 166-167. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZSUX201005090.htm
    [13]
    MA Chang-xi, GUO Kun-qing, MA Yong-hong. Prediction of highway freight volumes based on improved gray-Markov chain[J]. Journal of Lanzhou Jiaotong University, 2009, 28 (4): 124-127. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LZTX200904034.htm
    [14]
    FREITAS P S A, RODRIGUES A J L. Model combination in neural-based forecasting[J]. European Journal of Operational Research, 2006, 173 (3): 801-814. https://www.sciencedirect.com/science/article/pii/S0377221705006752
    [15]
    ZENG Wen-yi, LI Hong-xing, SHI Yu. Fuzzy linear regres-sion model (Ⅰ)[J]. Journal of Beijing Normal University: Natural Science, 2006, 42 (2): 120-125. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BSDZ200602003.htm
    [16]
    ZENG Wen-yi, LI Hong-xing, SHI Yu. Fuzzy linear regres-sion model (Ⅱ)[J]. Journal of Beijing Normal University: Natural Science, 2006, 42 (4): 334-338. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BSDZ200602003.htm

Catalog

    Article Metrics

    Article views (1198) PDF downloads(1852) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return