SUN Shou-qun, LIU Kang-ya, LIU Shuo-yan, LU: Xiao-jun, ZHAN Xuan. Moving target detection in complex environment of railway station[J]. Journal of Traffic and Transportation Engineering, 2013, 13(3): 113-120. doi: 10.19818/j.cnki.1671-1637.2013.03.016
Citation: SUN Shou-qun, LIU Kang-ya, LIU Shuo-yan, LU: Xiao-jun, ZHAN Xuan. Moving target detection in complex environment of railway station[J]. Journal of Traffic and Transportation Engineering, 2013, 13(3): 113-120. doi: 10.19818/j.cnki.1671-1637.2013.03.016

Moving target detection in complex environment of railway station

doi: 10.19818/j.cnki.1671-1637.2013.03.016
More Information
  • Author Bio:

    SUN Shourqun(1964-), male, associate professor, PhD, +86-21-55275056, jrssq@163.com

  • Received Date: 2013-01-18
  • Publish Date: 2013-06-25
  • Traditional GMM(Gaussian mixture model) was dived into background layer, completion layer and noise layer by using hierarchical organization.Diverse update mechanisms were applied in different layers. In order to correct possible misjudgment, promotion and downgraded mechanisms were introduced between layers. To eliminate noise, noise layer was updated by using noise filter based on contour detection. In order to improve the adaptability for changing background, pseudo foreground area was detected by using histogram matching. The detection effect of improved GMM was verified by using the videos of station and parking lot. Verification result indicates that the problem of long-term static target being merged into background is settled. The impact of light mutations or camera noise is reduced. The updating speed of model increases when the background changes. Detection speed increases by 10% compared with traditional GMM.The efficiency and accuracy of moving target detection in railway station are improved by improved GMM, and the foundation for intelligent video analysis is laid.

     

  • loading
  • [1]
    郑锦, 李波. 视频序列中运动对象检测技术的研究现状与展望[J]. 计算机应用研究, 2008, 25(12): 3534-3540. doi: 10.3969/j.issn.1001-3695.2008.12.004

    ZHENG Jin, LI Bo. Prospects and current studies on motion object detection in video sequences[J]. Application Research of Computers, 2008, 25(12): 3534-3540. (in Chinese). doi: 10.3969/j.issn.1001-3695.2008.12.004
    [2]
    STAUFFER C, GRIMSON W E L. Learning patterns of activity using real-time tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 747-757. doi: 10.1109/34.868677
    [3]
    杨国亮, 王志良, 牟世堂, 等. 一种改进的光流算法[J]. 计算机工程, 2006, 32(15): 187-188, 226. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJC200615065.htm

    YANG Guo-liang, WANG Zhi-liang, MU Shi-tang, et al. An improved optical flow algorithm[J]. Computer Engineering, 2006, 32(15): 187-188, 226. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJC200615065.htm
    [4]
    娄路, 赵玲, 耿涛. 运动车辆检测与跟踪方法[J]. 交通运输工程学报, 2012, 12(4): 107-133. http://transport.chd.edu.cn/article/id/201204014

    LOU Lu, ZHAO Ling, GENG Tao. Detecting and tracking method of movingvehicle[J]. Journal of Traffic and Transportation Engineering, 2012, 12(4): 107-133. (in Chinese). http://transport.chd.edu.cn/article/id/201204014
    [5]
    ZIVKOVIC Z, HEIJDEN F. Efficient adaptive density estimation per image pixel for the task of background subtraction[J]. Pattern Recognition Letters, 2006, 27(7): 773-780. doi: 10.1016/j.patrec.2005.11.005
    [6]
    LEE D S. Effective Gaussian mixture learning for video background subtraction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(5): 827-832. doi: 10.1109/TPAMI.2005.102
    [7]
    冯华文, 龚声蓉, 刘纯平. 基于改进高斯混合模型的前景检测[J]. 计算机工程, 2011, 37(19): 179-182. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJC201119061.htm

    FENG Hua-wen, GONG Sheng-rong, LIU Chun-ping. Foreground detection based on improved Gaussian mixture model[J]. Computer Engineering, 2011, 37(19): 179-182. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJC201119061.htm
    [8]
    刘静, 王玲. 混合高斯模型背景法的一种改进算法[J]. 计算机工程与应用, 2010, 46(13): 168-170. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201013052.htm

    LIU Jing, WANG Ling. Improved algorithm of Gaussian mixture model for background subtraction[J]. Computer Engineering and Applications, 2010, 46(13): 168-170. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201013052.htm
    [9]
    李红波, 唐培竣, 吴渝. Kalman滤波器对混合高斯背景建模的改进[J]. 计算机工程与应用, 2009, 45(24): 162-164, 245. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG200924050.htm

    LI Hong-bo, TANG Pei-jun, WU Yu. Mixture Gaussian background modeling improved by Kalman filtering[J]. Computer Engineering and Applications, 2009, 45(24): 162-164, 245. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG200924050.htm
    [10]
    陈祖爵, 陈潇君, 何鸿. 基于改进的混合高斯模型的运动目标检测[J]. 中国图象图形学报, 2007, 12(9): 1585-1589. doi: 10.3969/j.issn.1006-8961.2007.09.014

    CHEN Zu-jue, CHEN Xiao-jun, HE Hong. Moving object detection based on improved mixture Gaussian models[J]. Journal of Image and Graphics, 2007, 12(9): 1585-1589. (in Chinese). doi: 10.3969/j.issn.1006-8961.2007.09.014
    [11]
    SEKI M, WADA T, FUJIWARA H, et al. Background subtraction based on cooccurrence of image variations[C]∥IEEE. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington DC: IEEE, 2003: 65-72.
    [12]
    HEIKKILA M, PIETIKAINEN M. A texture-based method for modeling the background and detecting moving objects[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(4): 657-662.
    [13]
    CHEN Y T, CHEN C S, HUANG C R, et al. Efficient hierarchical method for background subtraction[J]. Patten Recognition, 2006, 40(10): 2706-2715.
    [14]
    常晓夫, 张文生, 董维山. 基于多种类视觉特征的混合高斯背景模型[J]. 中国图象图形学报, 2011, 16(5): 829-834. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB201105018.htm

    CHANG Xiao-fu, ZHANG Wen-sheng, DONG Wei-shan. Mixture of Gaussian background modeling method based on multi-category visual features[J]. Journal of Image and Graphics, 2011, 16(5): 829-834. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB201105018.htm
    [15]
    MASON M, DURIC Z. Using histograms to detect and track objects in color video[C]∥IEEE. Proceedings of the Applied Imagery Pattern Recognition Workshop. New York: IEEE, 2001: 154-159.
    [16]
    NORIEGA P, BASCLE B, BERNIER O. Local kernel color histograms for background subtraction[C]∥ALPESH R, HELDER A, BRUNO E. Proceedings of the First International Conference on Computer Vision Theory and Applications. Setubal: INSTICC, 2006: 213-219.
    [17]
    TSAI T, HUANG Y L, CHIANG T. Image retrieval based on dominant texture features[C]∥IEEE. Proceedings of the IEEE International Symposium on Industrial Electronics. New York: IEEE, 2006: 441-446.
    [18]
    王永忠, 梁彦, 潘泉, 等. 基于自适应混合高斯模型的时空背景建模[J]. 自动化学报, 2009, 35(4): 371-378. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO200904008.htm

    WANG Yong-zhong, LIANG Yan, PAN Quan, et al. Spatiotemporal background modeling based on adaptive mixture of Gaussians[J]. Acta Automatica Sinica, 2009, 35(4): 371-378. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO200904008.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (713) PDF downloads(728) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return