XU Qing-yuan, FAN Hao, MENG Ya-jun, ZHOU Xiao-lin, SHI Cheng-hua. Theoretical study of longitudinal connection for rubber floating slab track of subway tunnel[J]. Journal of Traffic and Transportation Engineering, 2013, 13(4): 37-44. doi: 10.19818/j.cnki.1671-1637.2013.04.006
Citation: XU Qing-yuan, FAN Hao, MENG Ya-jun, ZHOU Xiao-lin, SHI Cheng-hua. Theoretical study of longitudinal connection for rubber floating slab track of subway tunnel[J]. Journal of Traffic and Transportation Engineering, 2013, 13(4): 37-44. doi: 10.19818/j.cnki.1671-1637.2013.04.006

Theoretical study of longitudinal connection for rubber floating slab track of subway tunnel

doi: 10.19818/j.cnki.1671-1637.2013.04.006
More Information
  • Author Bio:

    XU Qing-yuan(1972-), male, associate professor, PhD, +86-731-88836044, xuqingyuan1972@163.com

  • Received Date: 2013-01-27
  • Publish Date: 2013-08-25
  • A coupling dynamics model of subway train, rubber floating slab track and tunnel was established, its corresponding program for coupling dynamic simulation was developed by MATLAB software, and the calculation result of coupling dynamic simulation program was verified by ANSYS software.With the developed coupling dynamic simulation program, a B-type subway train with a speed of 80km·h-1 was taken as an example, when it past through rubber floating slab track on tunnel with 3 kinds of floating slab lengths and 5 kinds of rubber stiffnesses, the influence of longitudinal connection form of rubber floating slab on the dynamic characteristics of coupling system was calculated.Calculation result shows that longitudinally articulated floating slab has little influence on the dynamic characteristics of each vehicle component, the maximum wheel-rail force, the dynamic characteristics of rail, the dynamic characteristics of rubber mat, and the dynamic characteristics of tunnel, and the influence is less than 10%.When floating slab is longitudinally articulated, the vibration acceleration of floating slab decreases significantly, but the maximum positive bending stress of floating slab increases to a certain extent.When the length of floating slab is longer and the stiffness of vibration-reduced rubber mat is lower, after the floating slab is longitudinally articulated, the maximum fastener tensile force near the joint of two neighboring floating slabs decreases significantly, and the decrease amplitude may exceed 80%.When the length of floating slab is 1.25 m, it is not necessary for the floating slab track to be longitudinally articulated, but when the length of floating slab is 5.00mand the stiffness of vibration-reduced rubber mat is less than 0.01N·mm-3, the floating slab track should be longitudinally articulated.When the length of floating slab is 31.25m, the floating slab track should be longitudinally articulated if the stiffness of vibration-reduced rubber mat is less than 0.02N·mm-3.

     

  • loading
  • [1]
    HUSSEIN M F M, HUNT H E M. A numerical model for calculating vibration due to a harmonic moving load on a floatingslab track with discontinuous slabs in an underground railway tunnel[J]. Journal of Sound and Vibration, 2009, 321 (1): 363-374.
    [2]
    SAURENMAN H, PHILLIPS J. In-service tests of the effectiveness of vibration control measures on the BART rail transit system[J]. Journal of Sound and Vibration, 2006, 293 (3): 888-900.
    [3]
    LI Zeng-guang, WU Tian-xing. 2-D modelling of floating slab track and performance analysis on vibration isolation[J]. Journal of the China Railway Society, 2011, 33 (8): 93-98. (in Chinese). doi: 10.3969/j.issn.1001-8360.2011.08.016
    [4]
    DING De-yun, LIU Wei-ning, ZHANG Bao-cai, et al. 3-D numerical study on vibration isolation performance of special floating slab track in lab[J]. Journal of the China Railway Society, 2009, 31 (6): 58-62. (in Chinese). doi: 10.3969/j.issn.1001-8360.2009.06.010
    [5]
    LOMBAERT G, DEGRANDE G, VANHAUWERE B, et al. The control of ground-borne vibrations from railway traffic by means of continuous floating slabs[J]. Journal of Sound and Vibration, 2006, 297 (3): 946-961.
    [6]
    KUO C M, HUANG C H, CHEN Y Y. Vibration characteristics of floating slab track[J]. Journal of Sound and Vibration, 2008, 317 (3): 1017-1034.
    [7]
    LIU Wei-feng, LIU Wei-ning, GUPTA S, et al. Dynamic response in tunnel and free field due to the moving underground trains[J]. Journal of Vibration and Shock, 2008, 27 (5): 81-84. (in Chinese). doi: 10.3969/j.issn.1000-3835.2008.05.022
    [8]
    HE Zhen-xing. Research of environmental vibration generated by unballasted slab track[D]. Chengdu: Southwest Jiaotong University, 2008. (in Chinese).
    [9]
    XU Qing-yuan, ZHANG Xu-jiu, ZENG Zhi-ping. Influence of the longitudinal connection form of the ballastless track on the vibration characteristics of train-slab ballastless tracksubgrade system[J]. China Railway Science, 2010, 31 (1): 32-37. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201001008.htm
    [10]
    XU Qing-yuan, CAO Yang-feng, ZHOU Xiao-lin. Influence of short-wave random irregularity on vibration characteristic of train-slab track-subgrade system[J]. Journal of Central South University: Science and Technology Edition, 2011, 42 (4): 1105-1110. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201104041.htm
    [11]
    XU Qing-yuan. Influence of short-wave random irregularity on the dynamic characteristics of train-slab track-bridge system[J]. China Civil Engineering Journal, 2011, 44 (10): 132-137. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201110022.htm
    [12]
    SATO Y. Study on high-frequency vibration in track operated with high-speed trains[J]. Quarterly Reports, 1977, 18 (3): 109-114.
    [13]
    XU Zhi-sheng. Prediction and control of wheel/rail noise for rail transit[D]. Chengdu: Southwest Jiaotong University, 2004. (in Chinese).
    [14]
    CHEN Guo, ZHAI Wan-ming. Numerical simulation of the stochastic process of railway track irregularities[J]. Journal of Southwest Jiaotong University, 1999, 34 (2): 138-142. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT902.002.htm
    [15]
    LEI Xiao-yan, MAO Li-jun. Analyses of dynamic response of vehicle and track coupling system with random irregularity of rail vertical profile[J]. China Railway Science, 2001, 22 (6): 38-43. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200106009.htm

Catalog

    Article Metrics

    Article views (902) PDF downloads(750) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return