LIU Ge, WANG Shuang-jie, JIN Long, DONG Yuan-hong, YUAN Kun. Applicable effect of thermosyphon subgrades in permafrost regions[J]. Journal of Traffic and Transportation Engineering, 2016, 16(4): 59-67. doi: 10.19818/j.cnki.1671-1637.2016.04.006
Citation: LIU Ge, WANG Shuang-jie, JIN Long, DONG Yuan-hong, YUAN Kun. Applicable effect of thermosyphon subgrades in permafrost regions[J]. Journal of Traffic and Transportation Engineering, 2016, 16(4): 59-67. doi: 10.19818/j.cnki.1671-1637.2016.04.006

Applicable effect of thermosyphon subgrades in permafrost regions

doi: 10.19818/j.cnki.1671-1637.2016.04.006
More Information
  • Author Bio:

    LIU Ge(1979-), male, senior engineer, PhD, +86-29-87600996, 416954907@qq.com

  • Received Date: 2016-06-10
  • Publish Date: 2016-08-25
  • In order to investigate the applicable effect of thermosyphon in permafrost regions along Qinghai-Tibet Highway, 8years'observational ground temperature data were collected from Chuma'er River test site, and the effective radius of thermosyphon was evaluated by taking the horizontal temperature gradient as the index. Additionally, to enhance the temperature-adjusted effect of thermosyphon, extend its application scope and meet the using demand of strong heat absorption of widened subgrade, the observational ground temperature data of the subgrade with XPS insulation board and thermosyphons and the subgrade with rock-crushed interlayer and thermosyphons at Beilu River and Anduo test sites were analyzed. Analysis result shows that the effective radius of thermosyphon after 1year's operation is about 2.3 m, and the influencing range gradually increases with the increase of operational time. Within the first 5 years of thermosyphon operation, the ground temperature obviously decreases, the ground temperature's decreasement around the thermosyphon is over 0.5 ℃, and then, the ground temperature slowlydecreases, which results from the decrease of ground-air temperature difference because of the increase of air temperature and the gradual decay of work motivation of thermosyphon. During8 years of thermosyphon operation, the artificial permafrost tables of thermosyphon subgrades are almost unchangeable because of thermosyphons'continuing refrigeration, while the maximum decrease of contemporaneous artificial permafrost table of common subgrade is about 80 cm. Since June for the subgrade with XPS insulation board and thermosyphons, the temperature difference between top and bottom of XPS insulation board gradually increases, and the maximum value is17 ℃, which effectively mitigates the downward transfer of heat in warm seasons. In 2years'adjustment of subgrade with crushed-rock interlayer and thermosyphons, the maximum decrease of ground temperature is 0.51 ℃.

     

  • loading
  • [1]
    WANG Shuang-jie, CHEN Jian-bing, LI Xian-hu. The highway construction technology in permafrost regions: research and engineering practice[J]. Journal of Glaciology and Geocryology, 2009, 31(2): 384-392. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT200902028.htm
    [2]
    WEN Zhi, SHENG Yu, MA Wei, et al. Long-term effect of insulation on permafrost on the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2006, 28(5): 760-765. (in Chinese). doi: 10.3969/j.issn.1000-0240.2006.05.020
    [3]
    LIU Ge, FAN Kai, ZHU Dong-peng, et al. The design way and the applicability of the regulation[J]. Journal of Highway and Transportation Research and Development, 2008, 25(9): 279-281, 290. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLJJ2008S1073.htm
    [4]
    MU Yan-hu, WANG Guo-shang, YU Qi-hao, et al. Thermal performance of a combined cooling method of thermosyphons and insulation boards for tower foundation soils along the Qinghai-Tibet Power Transmission Line[J]. Cold Regions Science and Technology, 2016, 121: 226-236. doi: 10.1016/j.coldregions.2015.06.006
    [5]
    LI Yong-qiang, WU Zhi-jian, WANG Yin-sheng, et al. Test study on the application effect of the thermal pipes on the roadbed in the permafrost region along Qinghai-Tibet Railway[J]. China Railway Science, 2008, 29(6): 6-11. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200806001.htm
    [6]
    WU Di, JIN Long, PENG Jian-bing, et al. The thermal budget evaluation of the two-phase closed thermosyphon embankment of the Qinghai-Tibet Highway in permafrost regions[J]. Cold Regions Science and Technology, 2014, 103(7): 115-122.
    [7]
    WEN Zhi, SHENG Yu, MA Wei, et al. Analysis on effect of permafrost protection by two-phase closed thermosyphon and insulation jointly in permafrost regions[J]. Cold Regions Science and Technology, 2005, 43(3): 150-163. doi: 10.1016/j.coldregions.2005.04.001
    [8]
    ZHANG Ming-yi, LAI Yuan-ming, ZHANG Jian-ming, et al. Numerical study on cooling characteristics of two-phase closed thermosyphon embankment in permafrost regions[J]. Cold Regions Science and Technology, 2011, 65(2): 203-210. doi: 10.1016/j.coldregions.2010.08.001
    [9]
    SUN Wen, WU Ya-ping, GUO Chun-xiang, et al. Influences of two-phase closed thermosyphon on permafrost roadbed stability[J]. China Journal of Highway and Transport, 2009, 22(5): 15-20. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200905002.htm
    [10]
    DONG Yuan-hong, LAI Yuan-ming, XU Xiang-tian, et al. Using perforated ventilation ducts to enhance the cooling effect of crushed-rock interlayer on embankments in permafrost regions[J]. Cold Regions Science and Technology, 2010, 62(1): 76-82. doi: 10.1016/j.coldregions.2010.03.003
    [11]
    PAN Wei-dong, LIAN Feng-yu, DENG Hong-yan, et al. Application principle and prospect of thermal-probe technique in cold regions engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(S2): 2673-2676. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2003S2027.htm
    [12]
    ZHANG Ming-yi, LAI Yuan-ming, WU Qing-bai, et al. A full-scale field experiment to evaluate the cooling performance of a novel composite embankment in permafrost regions[J]. International Journal of Heat and Mass Transfer, 2016, 95: 1047-1056. doi: 10.1016/j.ijheatmasstransfer.2015.12.067
    [13]
    ZHANG Jin-zhao. Study on the heat conduction process of roadbed in permafrost region and new control methods[D]. Beijing: Graduate University of Chinese Academy of Sciences, 2008. (in Chinese).
    [14]
    TIAN Ya-hu, LIU Jian-kun, SHEN Yu-peng. 3-D finite element analysis of cooling effect of Qinghai-Tibet Railway embankment with thermosyphons in permafrost regions[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 113-119. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2020.htm
    [15]
    MA Wei, MU Yan-hu, WU Qing-bai, et al. Characteristics and mechanisms of embankment deformation along the Qinghai-Tibet Railway in permafrost regions[J]. Cold Regions Science and Technology, 2011, 67(3): 178-186. doi: 10.1016/j.coldregions.2011.02.010
    [16]
    WANG Shuang-jie, HUANG Xiao-ming, CHEN Jian-bing, et al. Research on frozen soil subgrade cooling by non-power heat pipe[J]. Journal of Highway and Transportation Research and Development, 2005, 22(3): 1-4, 20. (in Chinese). doi: 10.3969/j.issn.1002-0268.2005.03.001
    [17]
    WU Jun-jie, MA Wei, SUN Zhi-zhong, et al. In-situ study on cooling effect of the two-phase closed thermosyphon and insulation combinational embankment of the Qinghai-Tibet Railway[J]. Cold Regions Science and Technology, 2010, 60(3): 234-244. doi: 10.1016/j.coldregions.2009.11.002
    [18]
    LAI Yuan-ming, GUO Hong-xin, DONG Yuan-hong. Laboratory investigation on the cooling effect of the embankment with L-shaped thermosyphon and crushed-rock revetment in permafrost regions[J]. Cold Regions Science and Technology, 2009, 58(3): 143-150. doi: 10.1016/j.coldregions.2009.05.002
    [19]
    SONG Yi, JIN Long, ZHANG Jin-zhao. In-situ study on cooling characteristics of two-phase closed thermosyphon embankment of Qinghai-Tibet Highway in permafrost regions[J]. Cold Regions Science and Technology, 2013, 93(9): 12-19.
    [20]
    ZHANG Ming-yi, LAI Yuan-ming, PEI Wan-sheng, et al. Effect of inclination angle on the heat transfer performance of a two-phase closed thermosyphon under low-temperature conditions[J]. Journal of Cold Regions Engineering, 2014, 28(4): 1-11.
    [21]
    JIN Long, WANG Shuang-jie, CHEN Jian-bing, et al. Study on the height effect of highway embankments in permafrost regions[J]. Cold Regions Science and Technology, 2012, 83-84: 122-130. doi: 10.1016/j.coldregions.2012.07.006
    [22]
    WANG Shuang-jie. Study on highway subgrade stabilization and prediction technique in plateau permafrost region[D]. Nanjing: Southeast University, 2005. (in Chinese).
    [23]
    LIU Ge, WANG Shuang-jie, YUAN Kun, et al. Adaptability and optimization of permafrost embankment structure under scale effect[J]. China Journal of Highway and Transport, 2015, 28(12): 17-25. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201512004.htm
    [24]
    MA Wei, WEN Zhi, SHENG Yu, et al. Remedying embankment thaw settlement in a warm permafrost region with thermosyphons and crushed rock revetment[J]. Canadian Geotechnical Journal, 2012, 49(9): 1005-1014. doi: 10.1139/t2012-058
    [25]
    DONG Yuan-hong, LAI Yuan-ming, CHEN Wu. Cooling effect of combined L-shaped thermosyphon, crushed-rock revetment and insulation for high-grade highways in permafrost regions[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(6): 1043-1049. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201206014.htm

Catalog

    Article Metrics

    Article views (1011) PDF downloads(505) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return