WANG Wen-jing, LI Guang-quan, HAN Jun-chen, LI Qiu-ze. Influence rule of dynamic stress of high-speed train gearbox housing[J]. Journal of Traffic and Transportation Engineering, 2019, 19(1): 85-95. doi: 10.19818/j.cnki.1671-1637.2019.01.009
Citation: WANG Wen-jing, LI Guang-quan, HAN Jun-chen, LI Qiu-ze. Influence rule of dynamic stress of high-speed train gearbox housing[J]. Journal of Traffic and Transportation Engineering, 2019, 19(1): 85-95. doi: 10.19818/j.cnki.1671-1637.2019.01.009

Influence rule of dynamic stress of high-speed train gearbox housing

doi: 10.19818/j.cnki.1671-1637.2019.01.009
More Information
  • Author Bio:

    WANG Wen-jing (1976-), female, professor, PhD, E-mail: wjwang@bjtu.edu.cn

    LI Guang-quan(1988-), male, PhD, aliguangquan@126.com

  • Received Date: 2018-08-23
  • Publish Date: 2019-02-25
  • The influence rules of running speed, line condition and wheel profiling on the dynamic stress of gearbox housing were studied based on the line test, and the change rule of dynamic stress of gearbox housing was analyzed combined with the vibration acceleration of axle box. Analysis result shows that the amplitude spectrums of dynamic stress of gearbox housing and the vertical acceleration of axle box are the same, and the main frequency is 570 Hz, which reflects that the dynamic stress level of the housing is closely related to the high frequency excitation caused by wheel-rail interaction. When the train running speed increases from 200 km·h-1 to 300 km·h-1, the stress amplitude of gearbox housing shows an increasing trend, especially in the tooth surface inspection hole of cracking housing. The equivalent stress increases from 5.56 MPa to 16.67 MPa, which is about 2 times larger. The irregularity caused by the rail wear has a great influence on the vibration of axle box and gearbox housing. When the train is running from worn line to grinding line, the vibration amplitude level of axle box in high frequency stage obviously reduces, and the equivalent stress of key point of the housing reduces from 16.26 MPa to 10.16 MPa, which decreases by 38%. The high frequency (550-650 Hz) excitation caused by the high-order polygon of the wheel at high speed (300 km·h-1) causes the high frequency vibration, the dynamic stress and equivalent stress of the housing increase substantially, and the equivalent stress of key point of the housing decreases from 17.45 MPa to 8.56 MPa before and after wheel profiling, which decreases by 51%. So rail grinding and wheel profiling can improve the stress state of gearbox housing. Therefore, reasonable rail grinding and wheel profiling cycle can effectively prolong the fatigue life of gearbox housing.

     

  • loading
  • [1]
    DENG Xiao-yu, ZHANG Wei-hua. Research on the dynamic characteristics of gear transmission system of high-speed train based on the rigid-flexible coupling dynamics[J]. High Speed Railway Technology, 2016, 4 (7): 50-54. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GSTL201604012.htm
    [2]
    SHEN Zhi-yun. On the study of high speed railways and trains[J]. Journal of Vibration, Measurement and Diagnosis, 1998, 18 (1): 1-7. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDTH200107000.htm
    [3]
    LI Guang-quan, WANG Wen-jing, YANG Guang-xue. Analysis on load characteristics of high-speed train gearbox[J]. Journal of Mechanical Engineering, 2018, 54 (4): 270-277. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201804039.htm
    [4]
    WANG Wen-jing, ZHANG Ying, QU Jun-sheng, et al. Dynamic stress response and fatigue reliability of gearbox housing for G-series high-speed train[J]. China Railway Science, 2018, 39 (6): 90-97. (in Chinese). doi: 10.3969/j.issn.1001-4632.2018.06.12
    [5]
    LI Guang-quan, LIU Zhi-ming, GUO Ru-bing, et al. Stress response and fatigue damage assessment of high-speed train gearbox[J]. Journal of Traffic and Transportation Engineering, 2018, 18 (1): 79-88. (in Chinese). doi: 10.3969/j.issn.1671-1637.2018.01.008
    [6]
    QI Jun-tong, HAN Jian-da. Application of wavelets transform to fault detection in rotorcraft UAV sensor failure[J]. Journal of Bionic Engineering, 2007, 4 (4): 265-270. doi: 10.1016/S1672-6529(07)60040-7
    [7]
    TANG He, WANG Yuan-hui, ZHANG Ce, et al. Discussion on the method of fault diagnosis for gearbox[J]. Journal of Mechanical Transmission, 1987, 11 (5): 29-32. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXCD198705008.htm
    [8]
    YANG Guang-xue, LI Guang-quan, LIU Zhi-ming, et al. Vibration characteristics analysis of gearbox housing system of high-speed train subjected to wheel-rail excitation[J]. Journal of the China Railway Society, 2017, 39 (11): 46-52. (in Chinese). doi: 10.3969/j.issn.1001-8360.2017.11.007
    [9]
    XING Xiu-san. Physical entropy, information entropy and their evolution equations[J]. Science in China: Series A, 2001, 44 (10): 1331-1339. doi: 10.1007/BF02877022
    [10]
    LIU Wen-guang, CHEN Guo-ping. Fatigue crack propagation resonance controll structures on longitudinal vibration[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2010, 42 (3): 298-302. (in Chinese). doi: 10.3969/j.issn.1005-2615.2010.03.007
    [11]
    LU Ren-ding. Synthetical diagnosis method of time domain and spectrums to gearbox fault[J]. Mechanical and Electrical Engineering Technology, 2007, 36 (6): 17-19, 51. (in Chinese). doi: 10.3969/j.issn.1009-9492.2007.06.007
    [12]
    HUANG Guan-hua, WANG Xing-yu, MEI Gui-ming, et al. Dynamic response analysis of gearbox housing system subjected to internal and external excitation in high-speed train[J]. Journal of Mechanical Engineering, 2015, 51 (12): 95-100. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201512016.htm
    [13]
    WU Yue, HAN Jian, LIU Jia, et al. Effect of high-speed train polygonal wheels on wheel/rail contact force and bogie vibration[J]. Journal of Mechanical Engineering, 2018, 54 (4): 37-46. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201804006.htm
    [14]
    SNYDER T, STONE D H, KRISTAN J. Wheel flat and out-of round formation and growth[C]//IEEE. Proceedings of the 2003 IEEE/ASME Joint Railroad Conference. New York: IEEE, 2003: 143-148.
    [15]
    BARKE D W, CHIU W K. A review of the effects of out-of-round wheels on track and vehicle components[J]. Journal of Rail and Rapid Transit, 2005, 219 (3): 151-175. doi: 10.1243/095440905X8853
    [16]
    ZHOU Qing-yue, LIU Feng-shou, ZHANG Yin-hua, et al. Solutions for problems at wheel-rail interface in high speed railway[J]. China Railway Science, 2017, 38 (5): 78-84. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201705013.htm
    [17]
    MA Si-qun, WANG Meng, WANG Xiao-jie, et al. Evaluation and measurement of high speed train by ride comfort and ride index[J]. Journal of Dalian Jiaotong University, 2015, 36 (S1): 66-68. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DLTD2015S1015.htm
    [18]
    MA Jian-min, LI Jing-yong. Effect of weld defects on the fatigue of aluminum alloy joint[J]. Development and Application of Materials, 2003, 18 (6): 31-34. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CLKY200306009.htm
    [19]
    WANG Wen-jing, LI Guang-jun, TANG Wei, et al. Research on mechanism of fatigue crack of high speed train axle box spring[J]. Journal of the China Railway Society, 2015, 37 (6): 41-47. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201506007.htm
    [20]
    SALVINI P, VIVIO F, VULLO V. Fatigue life evaluation for multi-spot welded structures[J]. International Journal of Fatigue, 2012, 31 (1): 122-129.
    [21]
    HUANG Wei, WANG Tie-jun, GARBATOV Y, et al. Fatigue reliability assessment of riveted lap joint of aircraft structures[J]. International Journal of Fatigue, 2012, 43 (1): 54-61.
    [22]
    ALDERLIESTEN R C. Critical review on the assessment of fatigue and fracture in composite materials and structures[J]. Engineering Failure Analysis, 2013, 35: 370-379.
    [23]
    FOONG C H, PAVLOVSKAIA E, WIERCIGROCH M, et al. Chaos caused by fatigue crack growth[J]. Chaos Solitons and Fractals, 2003, 5 (16): 651-659.
    [24]
    FOONG C H, WIERCIGROCH M, DEANS W F. Novel dynamic fatigue-testing device: design and measurements[J]. Measurement Science and Technology, 2006, 17 (18): 2218-2226.
    [25]
    WANG Wen-jing, HUI Xiao-long, MA Ji-jun. Fatigue crack mechanism research on high speed train equipment cabin frame[J]. Journal of Mechanical Engineering, 2015, 51 (6): 142-147. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201506025.htm
    [26]
    CHEN Zhi-fang, YAO Jian-wei. Development of suspended gearboxes for high speed cardan-shaft power bogies[J]. Locomotive and Rolling Stock Technology, 2002 (4): 8-12. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JCCL200204002.htm
    [27]
    CHANG Cheng-cheng. Research on transmission of vibration of high speed train gear box and gear box line test[D]. Beijing: Beijing Jiaotong University, 2015. (in Chinese).
    [28]
    REN Zun-song, LIU Zhi-ming. Vibration and frequency domain characteristics of high speed EMU[J]. Journal of Mechanical Engineering, 2013, 49 (16): 1-7. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201316002.htm
    [29]
    WANG Wen-jing, WANG Yan, SUN Shou-guang, et al. Long-term load spectrum test of high-speed train bogie[J]. Journal of Southwest Jiaotong University, 2015, 50 (1): 84-89. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201501014.htm
    [30]
    LIU Zhi-ming. A research on fatigue life and reliability of welding frame under random loads[D]. Beijing: Beijing Jiaotong University, 2001. (in Chinese).
    [31]
    ZHOU Su-xia, LI Fu-sheng, XIE Ji-long, et al. Equivalent stress evaluation of the load spectrum measured on the EMU axle based on damage tolerance[J]. Journal of Mechanical Engineering, 2015, 51 (8): 131-136. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201508019.htm
    [32]
    YUAN Yu-qing, LI Qiang, YANG Guang, et al. Line test and abnormal vibration analysis of high-speed train gearbox[J]. Railway Locomotive and Car, 2016, 36 (1): 24-29. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201601008.htm
    [33]
    LI Guang-quan, LIU Zhi-ming, WANG Wen-jing, et al. Fatigue crack mechanism study on high-speed EMU gearbox[J]. Journal of Mechanical Engineering, 2017, 53 (2): 99-105. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201702013.htm

Catalog

    Article Metrics

    Article views (1899) PDF downloads(1115) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return