Citation: | WANG Hai-nian, DING He-yang, FENG Po-nan, SHAO Lin-long, QU Xin, YOU Zhan-ping. Advances on molecular simulation technique in asphalt mixture[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 1-14. doi: 10.19818/j.cnki.1671-1637.2020.02.001 |
[1] |
AIGNER E, LACKNER R, PICHLER C. Multiscale prediction of viscoelastic properties of asphalt concrete[J]. Journal of Materials in Civil Engineering, 2009, 21(12): 771-780. doi: 10.1061/(ASCE)0899-1561(2009)21:12(771)
|
[2] |
SUN Min, ZHENG Mu-lian, BI Yu-feng, et al. Modification mechanism and performance of polyurethane modified asphalt[J]. Journal of Traffic and Transportation Engineering, 2019, 19(2): 49-58. (in Chinese). doi: 10.3969/j.issn.1671-1637.2019.02.005
|
[3] |
WANG Ming, LIU Li-ping. Aging behaviors of nanoscale mechanical properties of asphalt phases[J]. Journal of Traffic and Transportation Engineering, 2019, 19(6): 1-13. (in Chinese). doi: 10.3969/j.issn.1671-1637.2019.06.002
|
[4] |
SU Man-man, SI Chun-di, ZHANG Zeng-ping, et al. Molecular dynamics study on influence of Nano-ZnO/SBS on physical properties and molecular structure of asphalt binder[J]. Fuel, 2020, 263, DOI: 10.1016/j.fuel,2019.116777.
|
[5] |
YAO Hui, DAI Qing-li, YOU Zhan-ping. Investigation of the asphalt-aggregate interaction using molecular dynamics[J]. Petroleum Science and Technology, 2017, 35(6): 586-593. doi: 10.1080/10916466.2016.1270303
|
[6] |
HU Dong-liang, PEI Jian-zhong, LI Rui, et al. Using thermodynamic parameters to study self-healing and interface properties of crumb rubber modified asphalt based on molecular dynamics simulation[J]. Frontiers of Structural and Civil Engineering, 2019, 14(6), DOI: 10.1007/s11709-019-0579-6.
|
[7] |
XU Gang-ji, WANG Hao. Diffusion and interaction mechanism of rejuvenating agent with virgin and recycled asphalt binder: amolecular dynamics study[J]. Molecular Simulation, 2018, 44(17): 1433-1443. doi: 10.1080/08927022.2018.1515483
|
[8] |
HUANG Man, ZHANG Hong-liang, GAO Yang, et al. Study of diffusion characteristics of asphalt-aggregate interface with molecular dynamics simulation[J]. International Journal of Pavement Engineering, 2019, DOI: 10.1080/10298436.2019.1608991.
|
[9] |
LU Yang, WANG Lin-bing. Atomistic modelling of moisture sensitivity: a damage mechanisms study of asphalt concrete interfaces[J]. Road Materials and Pavement Design, 2017, 18(S3): 200-214.
|
[10] |
YAO Hui, DAI Qing-li, YOU Zhan-ping. Chemo-physical analysis and molecular dynamics (MD) simulation of moisture susceptibility of nano hydrated lime modified asphalt mixtures[J]. Construction and Building Materials, 2015, 101: 536-547. doi: 10.1016/j.conbuildmat.2015.10.087
|
[11] |
WEN Yu-hua, ZHU Ru-zeng, ZHOU Fu-xin, et al. An overview on molecular dynamics simulation[J]. Advances in Mechanics, 2003, 33(1): 65-73. (in Chinese). doi: 10.3321/j.issn:1000-0992.2003.01.008
|
[12] |
LU Yang, WANG Lin-bing. Nano-mechanics modelling of deformation and failure behaviours at asphalt-aggregate interfaces[J]. International Journal of Pavement Engineering, 2011, 12(4): 311-323. doi: 10.1080/10298436.2011.575136
|
[13] |
SRIVASTAVA P, CHAPMAN W G, LAIBINIS P E. Molecular dynamics simulation of oxygen transport through n-alkanethiolate self-assembled monolayers on gold and copper[J]. The Journal of Physical Chemistry B, 2009, 113(2): 456-464. doi: 10.1021/jp807288e
|
[14] |
LIOVELL Thermodynamic properties of Lennard-Jones chain molecules: renormalization-group corrections to a modified statistical associating fluid theory[J]. The Journal of Physical Chemistry, 2004, 121(21): 10715-10724.
|
[15] |
JENNINGS P W, PRIBANIC J A S, DESANDO M A, et al. Binder characterization and evaluation by nuclear magnetic resonance spectroscopy[R]. Washington DC: National Research Council, 1993.
|
[16] |
CONG Yu-feng, LIAO Ke-jian, ZHAI Yu-chun. Application of molecular simulation for study of SBS modified asphalt[J]. Journal of Chemical Industry and Engineering(China), 2005, 56(5): 769-773. (in Chinese). doi: 10.3321/j.issn:0438-1157.2005.05.004
|
[17] |
CONG Yu-feng, HUANG Wei, LIAO Ke-jian, et al. Study on composition and structure of Liaoshu asphalt[J]. Petroleum Science and Technology, 2007, 22(3/4): 455-462.
|
[18] |
SUN Da-quan, SUN Guo-qiang, ZHU Xing-yi, et al. Intrinsic temperature sensitive self-healing character of asphalt binders based on molecular dynamics simulations[J]. Fuel, 2018, 211: 609-620. doi: 10.1016/j.fuel.2017.09.089
|
[19] |
ROGEL E. Studies on asphaltene aggregation via computational chemistry[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995, 104(1): 85-93.
|
[20] |
DICKIE J P, YEN T F. Macrostructures of the asphaltic fractions by various instrumental methods[J], Analytical Chemistry, 1967, 39(14): 1847-1852.
|
[21] |
STORM D A, EDWARDS J C, DECANIO S J, et al. Molecular representations of Ratawi and Alaska north slope asphaltenes based on liquid- and solid-state NMR[J]. Energy and Fuels, 1994, 8(3): 561-566. doi: 10.1021/ef00045a007
|
[22] |
ARTOK L, SU Yan, HIROSE Y, et al. Structure and reactivity of petroleum-derived asphaltene[J]. Energy and Fuels, 1999, 13(2): 287-296. doi: 10.1021/ef980216a
|
[23] |
MURGICH J, ABANERO J A, STRAUSZ O P. Molecular recognition in aggregates formed by asphaltene and resin molecules from the Athabasca oil sand[J]. Energy and Fuels, 1999, 13(2): 278-286. doi: 10.1021/ef980228w
|
[24] |
MURGICH J, RODR Molecular recognition and molecular mechanics of micelles of some model asphaltenes and resins[J]. Energy and Fuels, 1996, 10(1): 68-76.
|
[25] |
GROENZIN H, MULLINS O C. Molecular size and structure of asphaltenes from various sources[J]. Energy and Fuels, 2000, 14(3): 677-684. doi: 10.1021/ef990225z
|
[26] |
TAKANOHASHI T, SATO S, SAITO I, et al. Molecular dynamics simulation of the heat-induced relaxation of asphaltene aggregates[J]. Energy and Fuels, 2003, 17(1): 135-139. doi: 10.1021/ef0201275
|
[27] |
MULLINS O C. The modified Yen model[J]. Energy and Fuels, 2010, 24(4): 2179-2207. doi: 10.1021/ef900975e
|
[28] |
LI D D, GREENFIELD M L. Chemical compositions of improved model asphalt systems for molecular simulations[J]. Fuel, 2014, 115: 347-356. doi: 10.1016/j.fuel.2013.07.012
|
[29] |
LI D D, GREENFIELD M L. High internal energies of proposed asphaltene structures[J]. Energy and Fuels, 2011, 25(8): 3698-3705. doi: 10.1021/ef200507c
|
[30] |
ZHANG Zong-tao. Research on asphalt pavement resist permanent deformation under persistent and extreme high temperature conditions[D]. Xi'an: Chang'an University, 2018. (in Chinese).
|
[31] |
DING Yong-jie. Study on chemical structure characteristic of asphalt using molecular simulation[D]. Chongqing: Chongqing Jiaotong University, 2013. (in Chinese).
|
[32] |
WANG Peng, DONG Ze-jiao, TAN Yi-qiu, et al. Research on the formation mechanism of bee-like structures in asphalt binders based on molecular simulations[J]. China Journal of Highway and Transport, 2016, 29(3): 9-16. (in Chinese). doi: 10.3969/j.issn.1001-7372.2016.03.002
|
[33] |
GREENFIELD M L. Molecular modelling and simulation of asphaltenes and bituminous materials[J]. International Journal of Pavement Engineering, 2011, 12(4): 325-341. doi: 10.1080/10298436.2011.575141
|
[34] |
COELHO R R, HOVELL I, DE MELLO MONTE M B, et al. Characterisation of aliphatic chains in vacuum residues (VRs) of asphaltenes and resins using molecular modelling and FTIR techniques[J]. Fuel Processing Technology, 2006, 87(4): 325-333. doi: 10.1016/j.fuproc.2005.10.010
|
[35] |
AL-ZAID K, KHAN Z H, HAUSER A, et al. Composition of high boiling petroleum distillates of Kuwait crude oils[J]. Fuel, 1998, 77(5): 453-458.
|
[36] |
GUO Meng. Study on mechanism and multiscale evaluation method of interfacial interaction between asphalt binder and mineral aggregate[D]. Harbin: Harbin Institute of Technology, 2016. (in Chinese).
|
[37] |
GAO Fei. Diffusion mechanism and macro-micro characteristics of fresh-RAP binders[D]. Harbin: Harbin Institute of Technology, 2018. (in Chinese).
|
[38] |
ZHANG Li-qun, GREENFIELD M L. Relaxation time, diffusion, and viscosity analysis of model asphalt systems using molecular simulation[J]. The Journal of Physical Chemistry, 2007, 127(19), DOI: 10.1063/1.2799189.
|
[39] |
ZHANG Li-qun, GREENFIELD M L. Effects of polymer modification on properties and microstructure of model asphalt systems[J]. Energy and Fuels, 2008, 22(5): 3363-3375. doi: 10.1021/ef700699p
|
[40] |
HANSEN J S, LEMARCHAND C A, NIELSEN E, et al. Four-component united-atom model of bitumen[J]. The Journal of Physical Chemistry, 2013, 138(9), DOI: 10.1063/1.4792045.
|
[41] |
PAN Jie-lin, TAREFDER R A, HOSSAIN M I. Study of moisture impact on asphalt before and after oxidation using molecular dynamics simulations[J]. Transportation Research Record, 2016, 2574: 38-47. doi: 10.3141/2574-04
|
[42] |
XU Guang-ji, WANG Hao. Molecular dynamics study of oxidative aging effect on asphalt binder properties[J]. Fuel, 2017, 188: 1-10. doi: 10.1016/j.fuel.2016.10.021
|
[43] |
ZADSHIR M, OLDHAM D J, HOSSEINNEZHAD S, et al. Investigating bio-rejuvenation mechanisms in asphalt binder via laboratory experiments and molecular dynamics simulation[J]. Construction and Building Materials, 2018, 190: 392-402. doi: 10.1016/j.conbuildmat.2018.09.137
|
[44] |
MARTIN-MARTINEZ F J, FINI E H, BUEHLER M J. Molecular asphaltene models based on Clar sextet theory[J]. Royal Society of Chemistry Advances, 2015, 5(1): 753-759.
|
[45] |
DING Yong-jie, HUANG Bao-shan, SHU Xiang. Modeling shear viscosity of asphalt through nonequilibrium molecular dynamics simulation[J]. Transportation Research Record, 2018, DOI: 10.1177/0361198118793316.
|
[46] |
FALLAH F, KHABAZ F, KIM Y R, et al. Molecular dynamics modeling and simulation of bituminous binder chemical aging due to variation of oxidation level and saturate-aromatic-resin-asphaltene fraction[J]. Fuel, 2019, 237: 71-80. doi: 10.1016/j.fuel.2018.09.110
|
[47] |
KANG Yang, ZHOU Dun-hong, WU Qiang, et al. Molecular dynamics study on the glass forming process of asphalt[J]. Construction and Building Materials, 2019, 214: 430-440. doi: 10.1016/j.conbuildmat.2019.04.138
|
[48] |
GUO Fu-cheng, ZHANG Jiu-peng, PEI Jian-zhong, et al. Study on the mechanical properties of rubber asphalt by molecular dynamics simulation[J]. Journal of Molecular Modeling, 2019, 25(12), DOI: 10.1007/s00894-019-4250-x.
|
[49] |
LUO Dai-song, GUO Meng, TAN Yi-qiu. Molecular simulation of minerals-asphalt interfacial interaction[J]. Minerals, 2018, 8(5), DOI: 10.3390/min8050176.
|
[50] |
XU Guang-ji, WANG Hao. Study of cohesion and adhesion properties of asphalt concrete with molecular dynamics simulation[J]. Computational Materials Science, 2016, 112: 161-169. doi: 10.1016/j.commatsci.2015.10.024
|
[51] |
GUO Meng, TAN Yi-qiu, WANG Lin-bing, et al. Diffusion of asphaltene, resin, aromatic and saturate components of asphalt on mineral aggregates surface: molecular dynamics simulation[J]. Road Materials and Pavement Design, 2017, 18(S3): 149-158.
|
[52] |
CHU L, LUO L, FWA T F. Effects of aggregate mineral surface anisotropy on asphalt-aggregate interfacial bonding using molecular dynamics (MD) simulation[J]. Construction and Building Materials, 2019, 225: 1-12. doi: 10.1016/j.conbuildmat.2019.07.178
|
[53] |
XU Pei. Modeling and analysis of molecular dynamics for characterizing asphalt-aggregate interaction[D]. Xi'an: Chang'an University, 2013. (in Chinese).
|
[54] |
SUN Feng-yan, HUANG Lu, WANG Lin-bing. Molecular dynamics simulation of micro frictional contact characteristics between tires and asphalt pavement[J]. Chinese Journal of Engineering, 2016, 38(6): 847-852. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201606015.htm
|
[55] |
CHEN Jun, YIN Xiao-jing, ZHANG Qian-qian, et al. Water quality degradation due to metal in asphalt and molecular dynamics simulation on SARA fraction diffusion[J]. Journal of Southeast University (Natural Science Edition), 2017, 47(4): 799-805. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201704026.htm
|
[56] |
DING Yong-jie, HUANG Bao-shan, SHU Xiang, et al. Use of molecular dynamics to investigate diffusion between virgin and aged asphalt binders[J]. Fuel, 2016, 174: 267-273. doi: 10.1016/j.fuel.2016.02.022
|
[57] |
ZHAO Z, WU S, ZHOU X, et al. Molecular simulations of properties changes on nano-layered double hydroxides-modified bitumen[J]. Materials Research Innovations, 2015, 19(S8): 556-560.
|
[58] |
CHEN Long, HE Zhao-yi, CHEN Hong-bin, et al. Rheological characteristics and molecular dynamics simulation of interface regeneration between virgin and aged asphalts[J]. China Journal of Highway and Transport, 2019, 32(3): 25-33. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201903004.htm
|
[59] |
BHASIN A, BOMMAVARAM R, GREENFIELD M L, et al. Use of molecular dynamics to investigate self-healing mechanisms in asphalt binders[J]. Journal of Materials in Civil Engineering, 2011, 23(4): 485-492. doi: 10.1061/(ASCE)MT.1943-5533.0000200
|
[60] |
SUN Da-quan, SUN Guo-qiang, ZHU Xing-yi, et al. Identification of wetting and molecular diffusion stages during self-healing process of asphalt binder via fluorescence microscope[J]. Construction and Building Materials, 2017, 132: 230-239. doi: 10.1016/j.conbuildmat.2016.11.137
|
[61] |
TAN Yi-qiu, SHAN Li-yan, KIM Y R, et al. Healing characteristics of asphalt binder[J]. Construction and Building Materials, 2012, 27(1): 570-577. doi: 10.1016/j.conbuildmat.2011.07.006
|
[62] |
SUN Da-quan, LIN Tian-ban, ZHU Xing-yi, et al. Indices for self-healing performance assessments based on molecular dynamics simulation of asphalt binders[J]. Computational Materials Science, 2016, 114: 86-93. doi: 10.1016/j.commatsci.2015.12.017
|
[63] |
QU Xin, WANG Da-wei, HOU Yue, et al. Influence of paraffin on the microproperties of asphalt binder using MD simulation[J]. Journal of Materials in Civil Engineering, 2018, 30(8): 04018191-1-9. doi: 10.1061/(ASCE)MT.1943-5533.0002368
|
[64] |
YAO Hui, DAI Qing-Li, YOU Zhan-ping, et al. Modulus simulation of asphalt binder models using molecular dynamics (MD) method[J]. Construction and Building Materials, 2018, 162: 430-441. doi: 10.1016/j.conbuildmat.2017.09.106
|
[65] |
ZHOU X, WU S, LIU Q, et al. Effect of surface active agents on the rheological properties and solubility of layered double hydroxides-modified asphalt[J]. Materials Research Innovations, 2015, 19(S5): 978-982.
|
[66] |
XU Meng. Analysis of the diffusion of rejuvenator into asphalt based on the molecular dynamice simulation[D]. Harbin: Harbin Institute of Technology, 2015. (in Chinese).
|
[67] |
XU Guang-ji, WANG Hao, SUN Wei. Molecular dynamics study of rejuvenator effect on RAP binder: diffusion behavior and molecular structure[J]. Construction and Building Materials, 2018, 158: 1046-1054. doi: 10.1016/j.conbuildmat.2017.09.192
|
[68] |
XU Meng, YI Jun-yan, FENG De-cheng, et al. Diffusion characteristics of asphalt rejuvenators based on molecular dynamics simulation[J]. International Journal of Pavement Engineering, 2019, 20(5): 615-627. doi: 10.1080/10298436.2017.1321412
|
[69] |
SUN Wei, WANG Hao. Molecular dynamics simulation of diffusion coefficients between different types of rejuvenator and aged asphalt binder[J]. International Journal of Pavement Engineering, 2019, DOI: 10.1080/10298436.2019.1650927.
|
[70] |
PAHLAVAN F, SAMIEADEL A, DENG Shu-guang, et al. Exploiting synergistic effects of intermolecular interactions to synthesize hybrid rejuvenators to revitalize aged asphalt[J]. ACS Sustainable Chemistry and Engineering, 2019, 7(18): 15514-15525. doi: 10.1021/acssuschemeng.9b03263
|
[71] |
HORGNIES M, DARQUE-CERETTI E, FEZAI H, et al. Influence of the interfacial composition on the adhesion between aggregates and bitumen: investigations by EDX, XPS and peel tests[J]. International Journal of Adhesion and Adhesives, 2011, 31(4): 238-247. doi: 10.1016/j.ijadhadh.2011.01.005
|
[72] |
XU Guang-ji, WANG Hao. Molecular dynamics study of interfacial mechanical behavior between asphalt binder and mineral aggregate[J]. Construction and Building Materials, 2016, 121: 246-254. doi: 10.1016/j.conbuildmat.2016.05.167
|
[73] |
LU Yang, WANG Lin-bing. Nanoscale modelling of mechanical properties of asphalt-aggregate interface under tensile loading[J]. International Journal of Pavement Engineering, 2010, 11(5): 393-401. doi: 10.1080/10298436.2010.488733
|
[74] |
WANG Hao, LIN En-qiang, XU Guang-ji. Molecular dynamics simulation of asphalt-aggregate interface adhesion strength with moisture effect[J]. International Journal of Pavement Engineering, 2017, 18(5): 414-423. doi: 10.1080/10298436.2015.1095297
|
[75] |
XU Meng, YI Jun-yan, FENG De-cheng, et al. Analysis of adhesive characteristics of asphalt based on atomic force microscopy and molecular dynamics simulation[J]. ACS Applied Materials and Interfaces, 2016, 8(19): 12393-12403. doi: 10.1021/acsami.6b01598
|
[76] |
ZHANG Jing, MA Shi-bin, WEI Lian-yu, et al. Coupled micromechanical model of moisture-induced damage in asphalt mixtures[J]. Journal of China and Foreign Highway, 2015, 35(6): 254-259. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201506058.htm
|
[77] |
JENA N K, LYNE A L, MURUGAN N A, et al. Atomic level simulations of the interaction of asphaltene with quartz surfaces: role of chemical modifications and aqueous environment[J]. Materials and Structures, 2017, 50(1): 99-1-9. doi: 10.1617/s11527-016-0880-y
|
[78] |
ZHOU Xin-xing. Dynamic mechanical and interfacial adhesive properties of granular[D]. Wuhan: Wuhan University of Technology, 2016. (in Chinese).
|
[79] |
MOHD HASAN M R, CHEW J W, JAMSHIDI A, et al. Review of sustainability, pretreatment, and engineering considerations of asphalt modifiers from the industrial solid wastes[J]. Journal of Traffic and Transportation Engineering (English Edition), 2019, 6(3): 209-244. doi: 10.1016/j.jtte.2018.08.001
|