Citation: | MA Yong-jie, MA Yun-ting, CHENG Shi-sheng, MA Yi-de. Road vehicle detection method based on improved YOLO v3 model and deep-SORT algorithm[J]. Journal of Traffic and Transportation Engineering, 2021, 21(2): 222-231. doi: 10.19818/j.cnki.1671-1637.2021.02.019 |
[1] |
KACHACH R, CAÑAS J M. Hybrid three-dimensional and support vector machine approach for automatic vehicle tracking and classification using a single camera[J]. Journal of Electronic Imaging, 2016, 25(3): 033021. doi: 10.1117/1.JEI.25.3.033021
|
[2] |
DANELLJAN M, HAGER G, KHAN F, et al. Discriminative scale space tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(8): 1561-1575. doi: 10.1109/TPAMI.2016.2609928
|
[3] |
WEI Yun, TIAN Qing, GUO Jian-hua, et al. Multi-vehicle detection algorithm through combining Harr and HOG features[J]. Mathematics and Computers in Simulation, 2019, 155: 130-145. doi: 10.1016/j.matcom.2017.12.011
|
[4] |
杨娟, 曹浩宇, 汪荣贵, 等. 基于语义DCNN特征融合的细粒度车型识别模型[J]. 计算机辅助设计与图形学学报, 2019, 31(1): 141-157. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJF201901018.htm
YANG Juan, CAO Hao-yu, WANG Rong-gui, et al. Fine-grained car recognition model based on semantic DCNN features fusion[J]. Journal of Computer-Aided Design and Computer Graphics, 2019, 31(1): 141-157. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJF201901018.htm
|
[5] |
余烨, 傅云翔, 杨昌东, 等. 基于FR-ResNet的车辆型号精细识别研究[J/OL]. 自动化学报, (2019-04-03)[2020-12-22]. DOI: 10.16383/j.aas.c180539.
YU Ye, FU Yun-xiang, YANG Chang-dong, et al. Fine-grained car model recognition based on FR-ResNet[J/OL]. Acta Automatica Sinica, (2019-04-03)[2020-12-22]. DOI: 10.16383/j.aas.c180539.(in Chinese)
|
[6] |
凌艳, 陈莹. 多尺度上下文信息增强的显著目标检测全卷积网络[J]. 计算机辅助设计与图形学学报, 2019, 31(11): 2007- 2016. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJF201911015.htm
LING Yan, CHEN Ying. Salient object detection with multiscale context enhanced fully convolution network[J]. Journal of Computer-Aided Design and Computer Graphics, 2019, 31(11): 2007-2016. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJF201911015.htm
|
[7] |
鞠默然, 罗海波, 王仲博, 等. 改进的YOLO v3算法及其在小目标检测中的应用[J]. 光学学报, 2019, 39(7): 253-260. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201907028.htm
JU Mo-ran, LUO Hai-bo, WANG Zhong-bo, et al. Improved YOLO v3 algorithm and its application in small target detection[J]. Acta Optica Sinica, 2019, 39(7): 253-260. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201907028.htm
|
[8] |
LI Su-hao, LIN Jin-zhao, LI Guo-quan, et al. Vehicle type detection based on deep learning in traffic scene[J]. Procedia Computer Science, 2018, 131: 564-572. doi: 10.1016/j.procs.2018.04.281
|
[9] |
曹磊, 王强, 史润佳, 等. 基于改进RPN的Faster-RCNN网络SAR图像车辆目标检测方法[J]. 东南大学学报(自然科学版), 2021, 51(1): 87-91.
CAO Lei, WANG Qiang, SHI Run-jia, et al. Method for vehicle target detection on SAR image based on improved RPN in Faster-RCNN[J]. Journal of Southeast University (Natural Science Edition), 2021, 51(1): 87-91. (in Chinese)
|
[10] |
李琳辉, 伦智梅, 连静, 等. 基于卷积神经网络的道路车辆检测方法[J]. 吉林大学学报(工学版), 2017, 47(2): 384-391. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201702006.htm
LI Lin-hui, LUN Zhi-mei, LIAN Jing, et al. Convolution neural network-based vehicle detection method[J]. Journal of Jilin University (Engineering and Technology Edition), 2017, 47(2): 384-391. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201702006.htm
|
[11] |
LEE W J, DONG S P, DONG W K, et al. A vehicle detection using selective multi-stage features in convolutional neural networks[C]//IEEE. 17th International Conference on Control, Automation and Systems. New York: IEEE, 2017: 1-3.
|
[12] |
ALIREZA A, LUIS G, CRISTIANO P, et al. Multimodal vehicle detection: fusing 3D-LIDAR and color camera data[J]. Pattern Recognition Letters, 2018, 115: 20-29. doi: 10.1016/j.patrec.2017.09.038
|
[13] |
DAI Xue-rui. HybridNet: a fast vehicle detection system for autonomous driving[J]. Signal Processing: Image Communication, 2019, 70: 79-88. doi: 10.1016/j.image.2018.09.002
|
[14] |
LUO Ji-qing, FANG Hu-sheng, SHAO Fa-ming, et al. Multi-scale traffic vehicle detection based on faster R-CNN with NAS optimization and feature enrichment[J]. Defence Technology, 2021, DOI: 10.1016/j.dt.2020.10.006.
|
[15] |
邹伟, 殷国栋, 刘昊吉, 等. 基于多模态特征融合的自主驾驶车辆低辨识目标检测方法[J/OL]. 中国机械工程, (2020-06-24)[2020-12-22]. https://kns.cnki.net/kcms/detail/42.1294.TH.20200624.1308.008.html.
ZOU Wei, YIN Guo-dong, LIU Hao-ji, et al. Low-observable targets detection method for autonomous vehicles based on multi-modal feature fusion[J/OL]. China Mechanical Engineering, (2020-06-24)[2020-12-22]. https://kns.cnki.net/kcms/detail/42.1294.TH.20200624.1308.008.html. (in Chinese)
|
[16] |
汪昱东, 郭继昌, 王天保. 一种改进的雾天图像行人和车辆检测算法[J]. 西安电子科技大学学报, 2020, 47(4): 70-77. https://www.cnki.com.cn/Article/CJFDTOTAL-XDKD202004013.htm
WANG Yu-dong, GUO Ji-chang, WANG Tian-bao. Algorithm for foggy-image pedestrian and vehicle detection[J]. Journal of Xidian University, 2020, 47(4): 70-77. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDKD202004013.htm
|
[17] |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//IEEE. 27th IEEE Conference on Computer Vision and Pattern Recognition, New York: IEEE, 2014: 580-587.
|
[18] |
GIRSHICK R. Fast R-CNN[C]//IEEE. 15th IEEE International Conference on Computer Vision, New York: IEEE, 2015: 1440-1448.
|
[19] |
REN Shao-qing, HE Kai-ming, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. doi: 10.1109/TPAMI.2016.2577031
|
[20] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//IEEE. 29th IEEE Conference on Computer Vision and Pattern Recognition, New York: IEEE, 2016: 779-788.
|
[21] |
REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//IEEE. 30th IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2017: 6517-6525.
|
[22] |
REDMON J, FARHADI A. YOLOv3: an incremental improvement[R]. Ithaca: Cornell University, 2018.
|
[23] |
LIU WEI, ANGUELOV D, ERHAN D, et al. SSD: single shotmultibox detector[C]//Springer. 14th European Conference on Computer Vision. Berlin: Springer, 2016: 21-37.
|
[24] |
周苏, 支雪磊, 林飞滨, 等. 基于车载视频图像的车辆检测与跟踪算法[J]. 同济大学学报(自然科学版), 2019, 47(S1): 191-198. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ2019S1036.htm
ZHOU Su, ZHI Xue-lei, LIN Fei-bin, et al. Research on vehicle detection and tracking algorithm based on onboard video images[J]. Journal of Tongji University (Natural Science Edition), 2019, 47(S1): 191-198. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ2019S1036.htm
|
[25] |
金立生, 郭柏苍, 王芳荣, 等. 基于改进YOLOv3的车辆前方动态多目标检测算法[J/OL]. 吉林大学学报(工学版), (2020-12-17)[2020-12-22]. https://doi.org/10.13229/j.cnki.jdxbgxb20200588.
JIN Li-sheng, GUO Bai-cang, WANG Fang-rong. Dynamic multiple object algorithm for vehicle forward based on improved YOLOv3[J/OL]. Journal of Jilin University (Engineering and Technology Edition), (2020-12-17)[2020-12-22]. https://doi.org/10.13229/j.cnki.jdxbgxb20200588. (in Chinese)
|
[26] |
李珣, 刘瑶, 李鹏飞, 等. 基于Darknet框架下YOLO v2算法的车辆多目标检测方法[J]. 交通运输工程学报, 2018, 18(6): 142-158. doi: 10.3969/j.issn.1671-1637.2018.06.015
LI Xun, LIU Yao, LI Peng-fei, et al. Vehicle multi-target detection method based on YOLO v2 algorithm under darknet framework[J]. Journal of Traffic and Transportation Engineering, 2018, 18(6): 142-158. (in Chinese) doi: 10.3969/j.issn.1671-1637.2018.06.015
|
[27] |
黎洲, 黄妙华. 基于YOLO_v2模型的车辆实时检测[J]. 中国机械工程, 2018, 29(15): 1869-1874. doi: 10.3969/j.issn.1004-132X.2018.15.015
LI Zhou, HUANG Miao-hua. Vehicle detections based on YOLO_v2 in real-time[J]. China Mechanical Engineering, 2018, 29(15): 1869-1874. (in Chinese) doi: 10.3969/j.issn.1004-132X.2018.15.015
|
[28] |
刘军, 后士浩, 张凯, 等. 基于增强Tiny YOLOV3算法的车辆实时检测与跟踪[J]. 农业工程学报, 2019, 35(8): 118-125. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201908014.htm
LIU Jun, HOU Shi-hao, ZHANG Kai, et al. Real-time vehicle detection and tracking based on enhanced Tiny YOLOV3 algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(8): 118-125. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201908014.htm
|
[29] |
SRI J S, ESTHER R P. Little YOLO-SPP: a delicate real-time vehicle detection algorithm[J]. Optik, 2021, 225: 165818. doi: 10.1016/j.ijleo.2020.165818
|
[30] |
柳长源, 王琪, 毕晓君. 多目标小尺度车辆目标检测方法的研究[J/OL]. 控制与决策, (2020-09-03)[2020-12-22]. https://doi.org/10.13195/j.kzyjc.2020.0635.
LIU Chang-yuan, WANG Qi, BI Xiao-juan. Research on multi-target and small-scale vehicle target detection method[J/OL]. Control and Decision, (2020-09-03)[2020-12-22]. https://doi.org/10.13195/j.kzyjc.2020.0635. (in Chinese)
|
[31] |
LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//Springer. 13th European Conference on Computer Vision, 2014. Berlin: Springer, 2014: 740-755.
|
[32] |
王宇宁, 庞智恒, 袁德明. 基于YOLO算法的车辆实时检测[J]. 武汉理工大学学报, 2016, 38(10): 42-46. https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY201610009.htm
WANG Yu-ning, PANG Zhi-heng, YUAN De-ming. Vehicle detection based on YOLO in real time[J]. Journal of Wuhan University of Technology, 2016, 38(10): 42-46. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY201610009.htm
|