Citation: | ZHANG Qi-peng, GU Xing-yu, DING Ji-tong, HU Dong-liang. Creep damage model and damage evolution of asphalt mixtures[J]. Journal of Traffic and Transportation Engineering, 2021, 21(5): 104-113. doi: 10.19818/j.cnki.1671-1637.2021.05.009 |
[1] |
SINGH B, SABOO N, KUMAR P. Modelling the complex modulus strain relationship of asphalt binders[J]. Petroleum Science and Technology, 2016, 34(13): 1137-1144. doi: 10.1080/10916466.2016.1190749
|
[2] |
LIU Hong-fu, YANG Xin-yu, JIANG Li-jun, et al. Fatigue- creep damage interaction model of asphalt mixture under the semi-sine cycle loading[J]. Construction and Building Materials, 2020, 251: 119070. doi: 10.1016/j.conbuildmat.2020.119070
|
[3] |
ALRASHYDAH E I, ABO-QUDAIS S A. Modeling of creep compliance behavior in asphalt mixes using multiple regression and artificial neural networks[J]. Construction and Building Materials, 2018, 159: 635-641. doi: 10.1016/j.conbuildmat.2017.10.132
|
[4] |
DONG Ni-ya, WANG Duan-yi, ZHANG Shao-wei, et al. Exploring creep and recovery behavior of hot mix asphalt field cores with multi-sequenced repeated load test[J]. Construction and Building Materials, 2021, 279: 122435. doi: 10.1016/j.conbuildmat.2021.122435
|
[5] |
LUO Wen-bo, LI Bo, ZHANG Yong-jun, et al. A creep model of asphalt mixture based on variable order fractional derivative[J]. Applied Sciences, 2020, 10: 3862. doi: 10.3390/app10113862
|
[6] |
LUO Wen-bo, JAZOULI S, VU-KHANH T. Modeling of nonlinear viscoelastic creep of polycarbonate[J]. e-Polymers, 2007, 7(1): 191-201.
|
[7] |
DARABI M K, HUANG C W, BAZZAZ M, et al. Characterization and validation of the nonlinear viscoelastic- viscoplastic with hardening-relaxation constitutive relationship for asphalt mixtures[J]. Construction and Building Materials, 2019, 216: 648-660. doi: 10.1016/j.conbuildmat.2019.04.239
|
[8] |
BAI Fan, YANG Xin-hua, ZENG Guo-wei. Creep and recovery behavior characterization of asphalt mixture in compression[J]. Construction and Building Materials, 2014, 54: 504-511. doi: 10.1016/j.conbuildmat.2013.12.088
|
[9] |
SABOO N, MUDGAL A. Modelling creep and recovery response of asphalt binders using generalized burgers model[J]. Petroleum Science and Technology, 2018, 36(20): 1627-1634. doi: 10.1080/10916466.2018.1496109
|
[10] |
CHENG Yong-chun, LI He, LI Li-ding, et al. Viscoelastic properties of asphalt mixtures with different modifiers at different temperatures based on static creep tests[J]. Applied Sciences, 2019, 9(20): 4246. doi: 10.3390/app9204246
|
[11] |
尹应梅. 基于DMA法的沥青混合料动态粘弹特性及剪切模量预估方法研究[D]. 广州: 华南理工大学, 2011.
YIN Ying-mei. Research on dynamic viscoelastic characteristics and shear modulus predicting methods for asphalt mixtures based on dynamic mechanical analysis (DMA) means[D]. Guangzhou: South China University of Technology, 2011. (in Chinese)
|
[12] |
LAGOS-VARAS M, MOVILLA-QUESADA D, ARENAS J P, et al. Study of the mechanical behavior of asphalt mixtures using fractional rheology to model their viscoelasticity[J]. Construction and Building Materials, 2019, 200: 124-134. doi: 10.1016/j.conbuildmat.2018.12.073
|
[13] |
罗文波, 梁晟, 张永军. 沥青混合料动态黏弹性的分数阶微分本构模型[J]. 中国公路学报, 2020, 33(2): 34-43. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202002003.htm
LUO Wen-bo, LIANG Sheng, ZHANG Yong-jun. Fractional differential constitutive model for dynamic viscoelasticity of asphalt mixture[J]. China Journal of Highway and Transport, 2020, 33(2): 34-43. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202002003.htm
|
[14] |
ZBICIAK A, MICHALCZYK R, BRZEZI AN'G SKI K. Time- temperature superposition for viscoelastic materials with application to asphalt-aggregate mixes[J]. International Journal of Environmental Science and Technology, 2019, 16: 5059-5064. doi: 10.1007/s13762-018-1874-9
|
[15] |
CELAURO C, FECAROTTI C, PIRROTTA A, et al. Experimental validation of a fractional model for creep/recovery testing of asphalt mixtures[J]. Construction and Building Materials, 2012, 36: 458-466. doi: 10.1016/j.conbuildmat.2012.04.028
|
[16] |
ZHANG Yong-jun, LIU Xiu, YIN Bo-yuan, et al. A nonlinear fractional viscoelastic-plastic creep model of asphalt mixture[J]. Polymers, 2021, 13(8): 1278. doi: 10.3390/polym13081278
|
[17] |
HUANG Chun-shui, WANG Fang-tao, GAO Tao, et al. A new viscoelastic mechanics model for the creep behavior of fiber reinforced asphalt concrete[J]. Frattura Ed Integrità Strutturale, 2018, 12(45): 108-120. doi: 10.3221/IGF-ESIS.45.09
|
[18] |
张久鹏, 徐丽, 王秉纲. 沥青混合料蠕变模型的改进及其参数确定[J]. 武汉理工大学学报(交通科学与工程版), 2010, 34(4): 699-702, 706. doi: 10.3963/j.issn.1006-2823.2010.04.014
ZHANG Jiu-peng, XU Li, WANG Bing-gang. Modification of creep model of asphalt mixture and parameters determination[J]. Journal of Wuhan University of Technology (Transportation Science and Engineering), 2010, 34(4): 699-702, 706. (in Chinese) doi: 10.3963/j.issn.1006-2823.2010.04.014
|
[19] |
YE Yong, YANG Xin-hua, CHEN Chuan-yao. Experimental researches on visco-elastoplastic constitutive model of asphalt mastic[J]. Construction and Building Materials, 2009, 23(10): 3161-3165. doi: 10.1016/j.conbuildmat.2009.06.023
|
[20] |
刘俊卿, 李倩, 李红孝. 基于统计损伤理论的沥青混合料的蠕变模型[J]. 公路交通科技, 2014, 31(8): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201408003.htm
LIU Jun-qing, LI Qian, LI Hong-xiao. A new creep model of asphalt mixture based on statistical damage theory[J]. Journal of Highway and Transportation Research and Development, 2014, 31(8): 13-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201408003.htm
|
[21] |
郑健龙, 吕松涛, 田小革. 基于蠕变试验的沥青粘弹性损伤特性[J]. 工程力学, 2008, 25(2): 193-196. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200802035.htm
ZHENG Jian-long, LYU Song-tao, TIAN Xiao-ge. Viscoelastic damage characteristics of asphalt based on creep test[J]. Engineering Mechanics, 2008, 25(2): 193-196. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200802035.htm
|
[22] |
张久鹏, 黄晓明. 沥青混合料永久变形的弹黏塑-损伤力学模型[J]. 东南大学学报(自然科学版), 2010, 40(1): 185-189. doi: 10.3969/j.issn.1001-0505.2010.01.035
ZHANG Jiu-peng, HUANG Xiao-ming. Viscoelastoplastic- damage mechanics model of permanent deformation in asphalt mixture[J]. Journal of Southeast University (Natural Science Edition), 2010, 40(1): 185-189. (in Chinese) doi: 10.3969/j.issn.1001-0505.2010.01.035
|
[23] |
SUN Lu, ZHU Hao-ran, ZHU Yao-ting. Two-stage viscoelastic-viscoplastic damage constitutive model of asphalt mixtures[J]. Journal of Materials in Civil Engineering, 2013, 25(8): 958-971. doi: 10.1061/(ASCE)MT.1943-5533.0000646
|
[24] |
ZENG Guo-wei, YANG Xin-hua, BAI Fan, et al. Visco- elastoplastic damage constitutive model for compressed asphalt mastic[J]. Journal of Central South University, 2014, 21: 4007-4013. doi: 10.1007/s11771-014-2389-2
|
[25] |
ZHANG Jun, LI Zhi-wei, CHU Hao, et al. A viscoelastic damage constitutive model for asphalt mixture under the cyclic loading[J]. Construction and Building Materials, 2019, 227: 116631. doi: 10.1016/j.conbuildmat.2019.08.012
|
[26] |
WU Chun-li, LI Li-ding, WANG Wen-sheng, et al. Experimental characterization of viscoelastic behaviors of nano-TiO2/ CaCO3 modified asphalt and asphalt mixture[J]. Nanomaterials, 2021, 11(1): 106. doi: 10.3390/nano11010106
|
[27] |
ATHIRA P K, NARAYAN S P A, MURALI KRISHNAN J M, et al. Comparison of binder and mixture tests to characterize permanent deformation of elastomer and terpolymer modified binders[J]. Construction and Building Materials, 2020, 264: 120138. doi: 10.1016/j.conbuildmat.2020.120138
|
[28] |
KOELLER R C. Applications of fractional calculus to the theory of viscoelasticity[J]. Journal of Applied Mechanics, 1984, 51(2): 299-307. doi: 10.1115/1.3167616
|
[29] |
LEMAITRE J. How to use damage mechanics[J]. Nuclear Engineering and Design, 1984, 80(2): 233-245. doi: 10.1016/0029-5493(84)90169-9
|
[30] |
AL-RUB R K A, YOU T, MASAD E A, et al. Mesomechanical modeling of the thermo-viscoelastic, thermo-viscoplastic, and thermo-viscodamage response of asphalt concrete[J]. International Journal of Advances in Engineering Sciences and Applied Mathematics, 2011, 3(1/2/3/4): 14-33.
|
[31] |
KATSUKI D, GUTIERREZ M. Viscoelastic damage model for asphalt concrete[J]. Acta Geotechnica, 2011, 6(4): 231-241. doi: 10.1007/s11440-011-0149-0
|
[32] |
TASHMAN L, MASAD E, LITTLE D, et al. A microstructure- based viscoplastic model for asphalt concrete[J]. International Journal of Plasticity, 2005, 21(9): 1659-1685. doi: 10.1016/j.ijplas.2004.11.008
|