Citation: | ZHAO Jian-dong, SHEN Jin, LIU Lin-wei. Bus passenger flow classification prediction driven by CNN-GRU model and multi-source data[J]. Journal of Traffic and Transportation Engineering, 2021, 21(5): 265-273. doi: 10.19818/j.cnki.1671-1637.2021.05.022 |
[1] |
SINGHAL A, KAMGA C, YAZICI A. Impact of weather on urban transit ridership[J]. Transportation Research Part A: Policy and Practice, 2014, 69(69): 379-391.
|
[2] |
林小稳, 叶霞飞. 基于天气因素的城市轨道交通接驳客流预测改进模型[J]. 城市公共交通, 2014(7): 26-29. doi: 10.3969/j.issn.1009-1467.2014.07.011
LIN Xiao-wen, YE Xia-fei. An improved model of urban rail transit access passenger flow forecasting considering weather impact[J]. Urban Public Transport, 2014(7): 26-29. (in Chinese) doi: 10.3969/j.issn.1009-1467.2014.07.011
|
[3] |
刘欣彤. 降雨天气条件下短时公交客流预测研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.
LIU Xin-tong. Research on short-term bus passenger demand for casting under rainy weather conditions[D]. Harbin: Harbin Institute of Technology, 2016. (in Chinese)
|
[4] |
CUI Cheng-liang, ZHAO Ya-li, DUAN Zheng-yu. Research on the stability of public transit passenger travel behavior based on smart card data[C]//MA Jian-ming, YIN Ya-feng, HUANG He-lai, et al. COTA International Conference of Transportation Professionals. Reston: ASCE, 2014: 1318-1326.
|
[5] |
赵晋. 基于精细化人群分类的公交路径选择模型研究[D]. 北京: 北京工业大学, 2017.
ZHAO Jin. Research on public transport route selection model based on meticulous population classification[D]. Beijing: Beijing University of Technology, 2017. (in Chinese)
|
[6] |
KIEU L M, BHASKAR A, CHUNG E. Passenger segmentation using smart card data[J]. IEEE Transaction on Intelligent Transportation Systems, 2015, 16(3): 1537-1548. doi: 10.1109/TITS.2014.2368998
|
[7] |
何兆成, 余畅, 许敏行. 考虑出行模式和周期性的公交出行特征分析[J]. 交通运输系统工程与信息, 2016, 16(6): 135-141. doi: 10.3969/j.issn.1009-6744.2016.06.021
HE Zhao-cheng, YU Chang, XU Min-xing. Analyzing methods of residents' travel characteristics considering travel patterns and periodicity[J]. Journal of Transportation Systems Engineering and Information Technology, 2016, 16(6): 135-141. (in Chinese) doi: 10.3969/j.issn.1009-6744.2016.06.021
|
[8] |
XU Wei, QIN Yong, HUANG Hou-kuan. A new method of railway passenger flow forecasting based on spatio-temporal data mining[C]//IEEE. Proceedings of the 7th International IEEE Conference on Intelligent Transportation Systems. New York: IEEE, 2004: 402-405.
|
[9] |
顾杨, 韩印, 方雪丽. 基于ARMA模型的公交枢纽站客流量预测方法研究[J]. 交通信息与安全, 2011, 29(2): 5-9. doi: 10.3963/j.ISSN1674-4861.2011.02.002
GU Yang, HAN Yin, FANG Xue-li. Method of hub station passenger flow forecasting based on ARMA model[J]. Journal of Transport Information and Safety, 2011, 29(2): 5-9. (in Chinese) doi: 10.3963/j.ISSN1674-4861.2011.02.002
|
[10] |
赵阳阳, 夏亮, 江欣国. 基于经验模态分解与长短时记忆神经网络的短时地铁客流预测模型[J]. 交通运输工程学报, 2020, 20(4): 194-204. doi: 10.19818/j.cnki.1671-1637.2020.04.016
ZHAO Yang-yang, XIA Liang, JIANG Xin-guo. Short-term metro passenger flow prediction based on EMD-LSTM[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 194-204. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.04.016
|
[11] |
WANG Hai-zhong, LIU Lu, DONG Shang-jia, et al. A novel work zone short-term vehicle-type specific traffic speed prediction model through the hybrid EMD-ARIMA framework[J]. Transportmetrica B: Transport Dynamics, 2016, 4(3): 159-186. doi: 10.1080/21680566.2015.1060582
|
[12] |
雷定猷, 马强, 徐新平, 等. 基于非线性主成分分析和GA-RBF的高速公路交通量预测方法[J]. 交通运输工程学报, 2018, 18(3): 210-217. doi: 10.3969/j.issn.1671-1637.2018.03.022
LEI Ding-you, MA Qiang, XU Xin-ping, et al. Forecasting method of expressway traffic volume based on NPCA and GA-RBF[J]. Journal of Traffic and Transportation Engineering, 2018, 18(3): 210-217. (in Chinese) doi: 10.3969/j.issn.1671-1637.2018.03.022
|
[13] |
TONG Gang, FAN Chun-ling, CUI Feng-ying, et al. Fuzzy neural network model applied in the traffic flow prediction[C]//IEEE. The 2006 IEEE International Conference on Information Acquisition. New York: IEEE, 2006: 1229-1233.
|
[14] |
SUKENS J K, BRABANLER J D, LUKAS L, et al. Weighted least squares support vector machines: robustness and sparse approximation[J]. Neurocomputing, 2002, 48 (1): 85-105.
|
[15] |
BAR-GERA H, BOYCE D. Origin-based algorithms for combined travel forecasting models[J]. Transportation Research Part B: Methodological, 2003, 37(5): 405-422. doi: 10.1016/S0191-2615(02)00020-6
|
[16] |
ZHAO Shu-zhi, NI Tong-he, WANG Yang, et al. A new approach to the prediction of passenger flow in a transit system[J]. Computers and Mathematics with Application, 2010, 61(8): 1968-1974.
|
[17] |
ZHANG Da-fu, ZHANG Xin-ming, WANG Jian. Commuter travel identification based on bus IC data[J]. Procedia Social and Behavioral Sciences, 2013, 96: 1547-1555. doi: 10.1016/j.sbspro.2013.08.176
|
[18] |
王月玥. 基于多源数据的公共交通通勤出行特征提取方法研究[D]. 北京: 北京工业大学, 2014.
WANG Yue-yue. Research on methods of extracting commuting trip characteristic based on public transportation multi-source data[D]. Beijing: Beijing University of Technology, 2014. (in Chinese)
|
[19] |
柳伍生, 周向栋, 匡凯. 基于IC卡数据的公交下车站点区间不确定性客流推导方法[J]. 铁道科学与工程学报, 2018, 15(11): 2988-2994. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201811032.htm
LIU Wu-sheng, ZHOU Xiang-dong, KUANG Kai. The method of deriving passenger flow of bus alighting stops based on smart card data and interval uncertainty[J]. Journal of Railway Science and Engineering, 2018, 15(11): 2988-2994. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201811032.htm
|
[20] |
AKIMA H. A new method of interpolation and smooth curve fitting based on local procedures[J]. Journal of the ACM, 1970, 17(4): 589-602. doi: 10.1145/321607.321609
|
[21] |
CERVERO R. Alternative approaches to modeling the travel-demand impacts of smart growth[J]. Journal of the American Planning Association, 2006, 72(3): 285-295. doi: 10.1080/01944360608976751
|
[22] |
KEEMIN S, HUNJIN S. Factors generating boarding at metro station in the Seoul metropolitan area[J]. Cities, 2010, 27(5): 358-368. doi: 10.1016/j.cities.2010.05.001
|
[23] |
杨军, 侯忠生. 一种基于灰色马尔科夫的大客流实时预测模型[J]. 北京交通大学学报, 2013, 37(2): 119-123, 128. doi: 10.3969/j.issn.1673-0291.2013.02.022
YANG Jun, HOU Zhong-sheng. A grey Markov based on large passenger flow real-time prediction model[J]. Journal of Beijing Jiaotong University, 2013, 37(2): 119-123, 128. (in Chinese) doi: 10.3969/j.issn.1673-0291.2013.02.022
|
[24] |
张旭. 基于精细化用地数据的城市轨道交通客流预测[D]. 北京: 北京交通大学, 2019.
ZHANG Xu. Urban rail transit passenger flow forecast based on refined land use data[D]. Beijing: Beijing Jiaotong University, 2019. (in Chinese)
|
[25] |
LIU Guo-jin, YIN Zhen-zhi, JIA Yun-jian, et al. Passenger flow estimation based on convolutional neural network in public transportation system[J]. Knowledge-Based Systems, 2017, 123: 102-115. doi: 10.1016/j.knosys.2017.02.016
|
[26] |
李令先. 基于CNN的轨道交通拥堵预测算法研究[D]. 成都: 成都理工大学, 2019.
LI Ling-xian. Research on traffic congestion prediction algorithms based on CNN[D]. Chengdu: Chengdu University of Technology, 2019. (in Chinese)
|
[27] |
DAI Guo-wei, MA Chang-xi, XU Xue-cai. Short-term traffic flow prediction method for urban road sections based on space-time analysis and GRU[J]. IEEE Access, 2019, 7(1): 143025-143035.
|
[28] |
ZHAO Jian-dong, GAO Yuan, QU Yue-cai, et al. Travel time prediction: based on gated recurrent unit method and data fusion[J]. IEEE Access, 2018, 6(1): 70463-70472.
|
[29] |
NGUYEN T, NGUYEN G, NGUYEN B M. EO-CNN: an enhanced CNN model trained by equilibrium optimization for traffic transportation prediction[J]. Procedia Computer Science, 2020, 176: 800-809. doi: 10.1016/j.procs.2020.09.075
|
[30] |
XIONG Li-yan, ZHANG Lei, HUANG Xiao-hui, et al. DCAST: a spatiotemporal model with DenseNet and GRU based on attention mechanism[J]. Mathematical Problems in Engineering, 2021, DOI: 10.1155/2021/8867776.
|
[31] |
LYU Yi-Sheng, DUAN Yan-Jie, KANG Wen-wen, et al. Traffic flow prediction with big data: a deep learning approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(2): 865-873.
|
[32] |
ZHAO Jian-dong, GAO Yuan, BAI Zhi-ming, et al. Traffic speed prediction under non-recurrent congestion: based on LSTM method and BeiDou navigation satellite system data[J]. IEEE Intelligent Transportation Systems Magazine, 2019, 11(2): 70-81. doi: 10.1109/MITS.2019.2903431
|
[33] |
ZHAO Jian-dong, WU Hong-qiang, CHEN Liang-liang. Road surface state recognition based on SVM optimization and image segmentation processing[J]. Journal of Advanced Transportation, 2017, https://doi.org/10.1155/2017/6458495.
|
[34] |
GUO Dong-ning, WU Yi-hong, SHAMAI S, et al. Estimation in Gaussian noise: properties of the minimum mean-square error[J]. IEEE Transactions on Information Theory, 2011, 57(4): 2371-2385. doi: 10.1109/TIT.2011.2111010
|
[35] |
WILLMOTT C, MATSUURA K. Advantages of the mean absolute error(MAE) over the root mean square error (RMSE) in assessing average model performance[J]. Climate Research, 2005, 30(1): 79-82.
|
[36] |
ZHAO Jian-dong, GAO Yuan, GUO Yu-jie, et al. Travel time prediction of expressway based on multi-dimensional data and PSO-ARMAX model[J]. Advances in Mechanical Engineering, 2018, 10(2): 1-16.
|