Citation: | ZHAO Hang, ZHAO Min, SUN Di-hua, DU Cheng. Mixed traffic group throttling control strategy for traffic bottleneck of expressway[J]. Journal of Traffic and Transportation Engineering, 2022, 22(3): 162-173. doi: 10.19818/j.cnki.1671-1637.2022.03.013 |
[1] |
WANG Jia-wei, ZHENG Yang, CHEN Chao-yi, et al. Leading cruise control in mixed traffic flow: system modeling, controllability, and string stability[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, DOI: 10.1109/TITS.2021.3118021.
|
[2] |
GUO Qian-qiang, BAN Xue-gang, AZIZ H M A. Mixed traffic flow of human driven vehicles and automated vehicles on dynamic transportation networks[J]. Transportation Research Part C: Emerging Technologies, 2021, 128: 103159. doi: 10.1016/j.trc.2021.103159
|
[3] |
SARKER A, SHEN H Y, RAHMAN M, et al. A review of sensing and communication, human factors, and controller aspects for information-aware connected and automated vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(1): 7-29. doi: 10.1109/TITS.2019.2892399
|
[4] |
MA Jia-qi, LI Xiao-peng, SHLADOVER S, et al. Freeway speed harmonization[J]. IEEE Transactions on Intelligent Vehicles, 2016, 1(1): 78-89. doi: 10.1109/TIV.2016.2551540
|
[5] |
ENGLUND C, CHEN L, VORONOV A. Cooperative speed harmonization for efficient road utilization[C]//IEEE. 7th International Workshop on Communication Technologies for Vehicles. New York: IEEE, 2014: 19-23.
|
[6] |
YANG H, RAKHA H. Feedback control speed harmonization algorithm: methodology and preliminary testing[J]. Transportation Research Part C: Emerging Technologies, 2017, 81: 209-226. doi: 10.1016/j.trc.2017.06.002
|
[7] |
LU Xiao-yun, SHLADOVER S E. Review of variable speed limits and advisories[J]. Journal of the Transportation Research Board, 2014, 2423(1): 15-23. doi: 10.3141/2423-03
|
[8] |
ZHANG Yi-hang, IOANNOU P A. Combined variable speed limit and lane change control for highway traffic[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(7): 1812-1823. doi: 10.1109/TITS.2016.2616493
|
[9] |
GRUMERT E, MA Xiao-liang, TAPANI A. Analysis of a cooperative variable speed limit system using microscopic traffic simulation[J]. Transportation Research Part C: Emerging Technologies, 2015, 52: 173-186. doi: 10.1016/j.trc.2014.11.004
|
[10] |
JIN Hui-yun, JIN Wen-long. Control of a lane-drop bottleneck through variable speed limits[J]. Transportation Research Part C: Emerging Technologies, 2015, 58: 568-584. doi: 10.1016/j.trc.2014.08.024
|
[11] |
WU Yuan-kai, TAN Hua-chun, QIN Ling-qiao, et al. Differential variable speed limits control for freeway recurrent bottlenecks via deep reinforcement learning[J]. Transportation Research Part C: Emerging Technologies, 2020, 117: 102649. doi: 10.1016/j.trc.2020.102649
|
[12] |
KE Ze-mian, LI Zhi-bin, CAO Ze-hong, et al. Enhancing transferability of deep reinforcement learning-based variable speed limit control using transfer learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(7): 4684-4695. doi: 10.1109/TITS.2020.2990598
|
[13] |
TALEBPOUR A, MAHMASSANI H S, HAMDAR S H. Speed harmonization: Evaluation of effectiveness under congested conditions[J]. Journal of the Transportation Research Board, 2013, 2391(1): 69-79. doi: 10.3141/2391-07
|
[14] |
YANG H, RAKHA H. Feedback control speed harmonization algorithm: methodology and preliminary testing[J]. Transportation Research Part C: Emerging Technologies, 2017, 81: 209-226. doi: 10.1016/j.trc.2017.06.002
|
[15] |
HAN Yu, WANG Meng, HE Zi-ang, et al. A linear Lagrangian model predictive controller of macro- and micro-variable speed limits to eliminate freeway jam waves[J]. Transportation Research Part C: Emerging Technologies, 2021, 128: 103121. doi: 10.1016/j.trc.2021.103121
|
[16] |
RAADSEN M P H, BLIEMER M C J. Variable speed limits in the link transmission model using an information propagation method[J]. Transportation Research Part C: Emerging Technologies, 2021, 129: 103184. doi: 10.1016/j.trc.2021.103184
|
[17] |
MALIKOPOULOS A A, HONG S, PARK B B, et al. Optimal control for speed harmonization of automated vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(7): 2405-2417. doi: 10.1109/TITS.2018.2865561
|
[18] |
HAN Y, CHEN Dan-jue, AHN S. Variable speed limit control at fixed freeway bottlenecks using connected vehicles[J]. Transportation Research Part B: Methodological, 2017, 98: 113-134. doi: 10.1016/j.trb.2016.12.013
|
[19] |
WANG Yi-bing, YU Xiang-hua, ZHANG Si-yu, et al. Freeway traffic control in presence of capacity drop[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(3): 1497-1516. doi: 10.1109/TITS.2020.2971663
|
[20] |
GHIASI A, LI Xiao-peng, MA Jia-qi. A mixed traffic speed harmonization model with connected autonomous vehicles[J]. Transportation Research Part C: Emerging Technologies, 2019, 104: 210-233. doi: 10.1016/j.trc.2019.05.005
|
[21] |
GOULET N, AYALEW B. Distributed maneuver planning with connected and automated vehicles for boosting traffic efficiency[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, DOI: 10.1109/TITS.2021.3096878.
|
[22] |
RIOS-TORRES J, MALIKOPOULOS A A. Impact of partial penetrations of connected and automated vehicles on fuel consumption and traffic flow[J]. IEEE Transactions on Intelligent Vehicles, 2018, 3(4): 453-462.
|
[23] |
ARD T, DOLLAR R A, VAHIDI A, et al. Microsimulation of energy and flow effects from optimal automated driving in mixed traffic[J]. Transportation Research Part C: Emerging Technologies, 2020, 120: 102806. doi: 10.1016/j.trc.2020.102806
|
[24] |
ČIČIĆ M, XIONG Xi, JIN Li, et al. Coordinating vehicle platoons for highway bottleneck decongestion and throughput improvement[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, DOI: 10.1109/TITS.2021.3088775.
|
[25] |
ZU Yue, LIU Chen-hui, DAI Ran, et al. Real-time energy-efficient traffic controlvia convex optimization[J]. Transportation Research Part C: Emerging Technologies, 2018, 92: 119-136. doi: 10.1016/j.trc.2018.04.017
|
[26] |
LI Yong-fu, TANG Chuan-chong, LI Ke-zhi, et al. Consensus- based cooperative control for multi-platoon under the connected vehicles environment[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(6): 2220-2229. doi: 10.1109/TITS.2018.2865575
|
[27] |
JIA Dong-yao, NGODUY D. Platoon based cooperative driving model with consideration of realistic inter-vehicle communication[J]. Transportation Research Part C: Emerging Technologies, 2016, 68: 245-264.
|
[28] |
ZHAO Hang, SUN Di-hua, ZHAO Min, et al. Combined longitudinal and lateral control for heterogeneous nodes in mixed vehicle platoon under V2I communication[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, DOI: 10.1109/TITS.2021.3061413.
|
[29] |
于晓海, 郭戈. 车队控制中的一种通用可变时距策略[J]. 自动化学报, 2019, 45(7): 1335-1343. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201907010.htm
YU Xiao-hai, GUO Ge. A general variable time headway policy in platoon control[J]. Acta Automatica Sinica, 2019, 45(7): 1335-1343. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201907010.htm
|
[30] |
JIANG Rui, WU Qing-song, ZHU Zuo-jin. Full velocity difference model for a car-following theory[J]. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2001, 64: 017101.
|