Volume 22 Issue 5
Oct.  2022
Turn off MathJax
Article Contents
LIU Yong-jian, MA Zhi-yuan, LIU Jiang, ZHU Wei-qing, WANG Xu, LI Ming-hui. Temperature action and zoning of concrete jointless bridge in Shaanxi[J]. Journal of Traffic and Transportation Engineering, 2022, 22(5): 85-103. doi: 10.19818/j.cnki.1671-1637.2022.05.004
Citation: LIU Yong-jian, MA Zhi-yuan, LIU Jiang, ZHU Wei-qing, WANG Xu, LI Ming-hui. Temperature action and zoning of concrete jointless bridge in Shaanxi[J]. Journal of Traffic and Transportation Engineering, 2022, 22(5): 85-103. doi: 10.19818/j.cnki.1671-1637.2022.05.004

Temperature action and zoning of concrete jointless bridge in Shaanxi

doi: 10.19818/j.cnki.1671-1637.2022.05.004
Funds:

National Natural Science Foundation of China 52108111

National Natural Science Foundation of China 51978061

Key Research and Development Program of Qinghai Province 2021-SF-166

Fundamental Research Funds for the Central Universities 300102212102

More Information
  • Author Bio:

    LIU Yongjian (1966–), male, born in Yushan, Jiangxi Province, Professor at Chang'an University, PhD. He is engaged in research on bridge engineering. E-mail: liuyongjian@chd.edu.cn

    LIU Jiang (1991–), male, born in Xi'an, Shaanxi Province, Lecture at Chang'an University, PhD. E-mail: liu-jiang@chd.edu.cn

  • Received Date: 2022-03-10
  • Publish Date: 2022-10-25
  • In order to study the regional difference of temperature action of concrete jointless bridge, a long-term temperature field test was carried out for an integral jointless bridge. The accuracy of temperature field FEM (finite element model) was verified based on the recorded data. The meteorological data from 1993 to 2015 were collected from 46 national meteorological stations in Shaanxi Province and surrounding provinces, the missing solar radiation data were supplemented, and the daily data of meteorological stations were decomposed into hourly data for temperature field analysis. The long-term temperature field was simulated with the meteorological data for 23 years, and the representative values of effective temperature and temperature gradient with a 50-year return period were further calculated by the generalized Pareto model based on the New Zealand canonical temperature gradient model. The isoline map of temperature action was drawn by the spatial interpolation method and further simplified as a zoning map of temperature action. The temperature action mode was modified by considering different beam heights and pavement thicknesses, and an application case of zoning map was given to calculate the total span limit of the whole jointless bridge in each zoning of Shaanxi Province. Research results show that the effective temperature zoning map in Shaanxi Province coincides well with the General Specification for Design of Highway Bridges and Culverts (JTG D60—2015), while the values in Guanzhong and parts of Southern Shaanxi are more unfavorable than the specification. However, the top temperature differences of temperature gradient in most areas of Northern Shaanxi and Southern Shaanxi exceed the specification value of 14 ℃. There is no corresponding isothermal section recommended in the New Zealand standard temperature gradient model when the beam height is less than 1.4 m. The modified temperature gradient model can reasonably reveal the temperature distribution patterns with different beam heights. The thickness of asphalt pavement only has a great influence on the top temperature difference, and the difference can be corrected by the linear interpolation under different thicknesses. The longitudinal deformation of main girder of integral jointless bridge increases linearly with the length of the bridge, and its calculation can be simplified by introducing the longitudinal expansion reduction coefficient based on the free expansion deformation. The bridge length can be controlled by the bending failure of the abutment under heating and the low-cycle fatigue failure of the pile under cooling, and calculated according to the actual closing temperature. In the proposed three temperature zones, the maximum theoretical bridge length at the optimal closure temperature is 290, 240 and 220 m, respectively.

     

  • loading
  • [1]
    刘永健, 刘江, 张宁. 桥梁结构日照温度作用研究综述[J]. 土木工程学报, 2019, 52(5): 59-78. doi: 10.15951/j.tmgcxb.2019.05.006

    LIU Yong-jian, LIU Jiang, ZHANG Ning. Review on solar thermal actions of bridge structures[J]. China Civil Engineering Journal, 2019, 52(5): 59-78. (in Chinese) doi: 10.15951/j.tmgcxb.2019.05.006
    [2]
    许震, 陈宝春, 黄福云, 等. 无缝化改造的空心板桥受力性能[J]. 交通运输工程学报, 2018, 18(5): 66-76. doi: 10.3969/j.issn.1671-1637.2018.05.007

    XU Zhen, CHEN Bao-chun, HUANG Fu-yun, et al. Mechanical performance of jointless retrofitted bridge with hollow-slabs[J]. Journal of Traffic and Transportation Engineering, 2018, 18(5): 66-76. (in Chinese) doi: 10.3969/j.issn.1671-1637.2018.05.007
    [3]
    LIN Jian-hui, BRISEGHELLA B, XUE Jun-qing, et al. Temperature monitoring and response of deck-extension side-by-side box girder bridges[J]. Journal of Performance of Constructed Facilities, 2020, 34(2): 04019122. doi: 10.1061/(ASCE)CF.1943-5509.0001399
    [4]
    MARQUES LIMA J, DE BRITO J. Inspection survey of 150 expansion joints in road bridges[J]. Engineering Structures, 2009, 31(5): 1077-1084. doi: 10.1016/j.engstruct.2009.01.011
    [5]
    XU Zhen, CHEN Bao-chun, ZHUANG Yi-zhou, et al. Rehabilitation and retrofitting of a multispan simply-supported adjacent box girder bridge into a jointless and continuous structure[J]. Journal of Performance of Constructed Facilities, 2018, 32(1): 04017112. doi: 10.1061/(ASCE)CF.1943-5509.0001107
    [6]
    POTGIETER I C, GAMBLE W L. Response of highway bridges to nonlinear temperature distributions[R]. Urbana-Champaign: University of Illinois at Urbana-Champaign, 1983.
    [7]
    POTGIETER I C, GAMBLE W L. Nonlinear temperature distributions in bridges at different locations in the United States[J]. PCI Journal, 1989, 34(4): 80-103. doi: 10.15554/pcij.07011989.80.103
    [8]
    IMBSEN R A, VANDERSHAF D E, SCHAMBER R A, et al. Thermal effects in concrete bridge super structures[R]. Washington DC: National Research Council, 1985.
    [9]
    MIRAMBELL E, AGUADO A, MENDES P A, et al. Design temperature differences for concrete bridges[J]. Structural Engineering International, 1991, 1(3): 36-40. doi: 10.2749/101686691780617436
    [10]
    刘江, 刘永健, 白永新, 等. 混凝土箱梁温度梯度模式的地域差异性及分区研究[J]. 中国公路学报, 2020, 33(3): 73-84. doi: 10.3969/j.issn.1001-7372.2020.03.007

    LIU Jiang, LIU Yong-jian, BAI Yong-xin, et al. Regional variation and zoning of temperature gradient pattern of concrete box girder[J]. China Journal of Highway and Transport, 2020, 33(3): 73-84. (in Chinese) doi: 10.3969/j.issn.1001-7372.2020.03.007
    [11]
    刘江, 刘永健, 马志元, 等. 钢-混凝土组合梁桥的温度梯度作用(Ⅱ)——地域差异与等值线地图[J]. 中国公路学, 2022, https://kns.cnki.net/KCMS/detail/detail.aspx?filename=ZGGL20211208000&dbname=CJFD&dbcode=CJFQ.

    LIU Jiang, LIU Yong-jian, MA Zhi-yuan, et al. Temperature gradient action of steel-concrete composite girder bridge (Ⅱ) regional difference and isoline map[J]. China Journal of Highway and Transport, 2022, https://kns.cnki.net/KCMS/detail/detail.aspx?filename= ZGGL20211208000&dbname=CJFD&dbcode=CJFQ. (in Chinese)
    [12]
    季德钧, 刘江, 张瑑芳, 等. 高原高寒地区钢-混凝土组合梁斜拉桥温度效应分析[J]. 建筑科学与工程学报, 2016, 33(1): 113-119. doi: 10.3969/j.issn.1673-2049.2016.01.016

    JI De-jun, LIU Jiang, ZHANG Zhuan-fang, et al. Temperature effect analysis of steel-concrete composite girder cable-stayed bridge in arctic-alpine region[J]. Journal of Architecture and Civil Engineering, 2016, 33(1): 113-119. (in Chinese) doi: 10.3969/j.issn.1673-2049.2016.01.016
    [13]
    PISARENKO V F, SORNETTE D. Characterization of the frequency of extreme earthquake events by the generalized Pareto distribution[J]. Pure and Applied Geophysics, 2003, 160(12): 2343-2364. doi: 10.1007/s00024-003-2397-x
    [14]
    HO D, LIU C H. Extreme thermal loadings in highway bridges[J]. Journal of Structural Engineering, 1989, 115(7): 1681-1696. doi: 10.1061/(ASCE)0733-9445(1989)115:7(1681)
    [15]
    张青雯, 崔宁博, 冯禹, 等. 基于气象资料的日辐射模型在中国西北地区适用性评价[J]. 农业工程学报, 2018, 34(2): 189-196. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201802026.htm

    ZHANG Qing-wen, CUI Ning-bo, FENG Yu, et al. Evaluation on applicability of daily solar radiation model in Northwest China based on meteorological data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(2): 189-196. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201802026.htm
    [16]
    COLLARES-PEREIRA M, RABL A. The average distribution of solar radiation-correlations between diffuse and hemispherical and between daily and hourly insolation values[J]. Solar Energy, 1979, 22(2): 155-164. doi: 10.1016/0038-092X(79)90100-2
    [17]
    LIU B Y H, JORDAN R C. The interrelationship and characteristic distribution of direct, diffuse and total solar radiation[J]. Solar Energy, 1960, 4(3): 1-19. doi: 10.1016/0038-092X(60)90062-1
    [18]
    AU F T K, THAM L G, TONG M. Design thermal loading for steel bridges in Hong Kong[J]. Transactions Hong Kong Institution of Engineers, 2001, 8(2): 1-9.
    [19]
    薛俊青, 林健辉, BRISEGHELLA B, 等. 适用于桥梁截面温度场计算的太阳辐射模型研究综述[J]. 福州大学学报(自然科学版), 2018, 46(4): 526-533. https://www.cnki.com.cn/Article/CJFDTOTAL-FZDZ201804011.htm

    XUE Jun-qing, LIN Jian-hui, BRISEGHELLA B, et al. A state-of-the-art of research on solar radiation model for calculation of temperature distribution of bridge cross section[J]. Journal of Fuzhou University (Natural Science Edition), 2018, 46(4): 526-533. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FZDZ201804011.htm
    [20]
    孙维刚, 陈永瑞, 刘来君, 等. 寒冷地区混凝土箱梁温度场研究[J]. 合肥工业大学学报(自然科学版), 2015, 38(7): 962-967. doi: 10.3969/j.issn.1003-5060.2015.07.019

    SUN Wei-gang, CHEN Yong-rui, LIU Lai-jun, et al. Study of temperature field of concrete box girder in cold area[J]. Journal of Hefei University of Technology(Natural Science), 2015, 38(7): 962-967. (in Chinese) doi: 10.3969/j.issn.1003-5060.2015.07.019
    [21]
    ABID S R, TAYŞI N, ÖZAKÇA M. Experimental analysis of temperature gradients in concrete box-girders[J]. Construction and Building Materials, 2016, 106: 523-532. doi: 10.1016/j.conbuildmat.2015.12.144
    [22]
    刘江刘永健, 马志元, 等. 钢-混凝土组合梁桥的温度梯度作用: 作用模式与极值分析[J]. 中国公路学报, 2022, 35(9): 269-286. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202209021.htm

    LIU Jiang, LIU Yong-jian, MA Zhi-yuan, et al. Temperature gradient action of steel-concrete composite girder bridge: action pattern and extreme value analysis[J]. China Journal of Highway and Transport, 2022, 35(9): 269-286. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202209021.htm
    [23]
    陈宝春, 王晨辉, 薛俊青, 等. 中国无伸缩缝桥梁调查与分析[J]. 建筑科学与工程学报, 2022, 39(5): 13-21. https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG202205002.htm

    CHEN Bao-chun, WANG Chen-hui, XUE Jun-qing, et al. Investigation and analysis of jointless bridges in China[J]. Journal of Architecture and Civil Engineering, 2022, 39(5): 13-21. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG202205002.htm
    [24]
    BRISEGHELLA B, 唐玉风, 薛俊青, 等无伸缩缝桥梁引板研究综述[J]. 福州大学学报(自然科学版), 2021, 49(2): 209-216. https://www.cnki.com.cn/Article/CJFDTOTAL-FZDZ202102011.htm

    BRISEGHELLA B, TANG Yu-feng, XUE Jun-qing, et al. Review of research on approach slabs in jointless bridges[J]. Journal of Fuzhou University (Natural Science Edition), 2021, 49(2): 209-216. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FZDZ202102011.htm
    [25]
    LIN Jian-hui, BRISEGHELLA B, XUE Jun-qing, et al. Temperature monitoring and response of deck-extension side-by-side box girder bridges[J]. Journal of Performance of Constructed Facilities, 2020, 34(2): 04019122. doi: 10.1061/(ASCE)CF.1943-5509.0001399
    [26]
    薛俊青, 陈宝春, 林健辉. 空心板延伸桥面板桥温度胀缩变形研究[J]. 桥梁建设, 2018, 48(2): 37-42. doi: 10.3969/j.issn.1003-4722.2018.02.007

    XUE Jun-qing, CHEN Bao-chun, LIN Jian-hui. Study of temperature expansion and contraction deformation of bridges with their deck slabs extended by hollow slabs[J]. Bridge Construction, 2018, 48(2): 37-42. doi: 10.3969/j.issn.1003-4722.2018.02.007
    [27]
    BRISEGHELLA B, 薛俊青, 兰成, 等. 整体式桥台桥梁极限长度[J]. 建筑科学与工程学报, 2014, 31(1): 104-110. doi: 10.3969/j.issn.1673-2049.2014.01.013

    BRISEGHELLA B, XUE Jun-qing, LAN Cheng, et al. Maximum length of integral abutment bridges[J]. Journal of Architecture and Civil Engineering, 2014, 31(1): 104-110. (in Chinese) doi: 10.3969/j.issn.1673-2049.2014.01.013
    [28]
    程业, 潘旦光, 吴勇, 等. 混凝土箱梁支座位移实验及有效温度计算[J]. 工程力学, 2017, 34(9): 220-229. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201709026.htm

    CHENG Ye, PAN Dan-guang, WU Yong, et al. Support displacement test and effective temperature calculation of concrete box girder[J]. Engineering Mechanics, 2017, 34(9): 220-229. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201709026.htm
    [29]
    LAFAVE J M, FAHNESTOCK L A, WRIGHT B A, et al. Integral abutment bridges under thermal loading: numerical simulations and parametric study[R]. Illinois: Illinois Center for Transportation, 2016.
    [30]
    DICLELI M, ALBHAISI S M. Estimation of length limits for integral bridges built on clay[J]. Journal of Bridge Engineering, 2004, 9(6): 572-581. doi: 10.1061/(ASCE)1084-0702(2004)9:6(572)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (671) PDF downloads(79) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return