Citation: | LI Yang, WANG Zuo-cai, WANG Chang-jian, HAN Guang-zhao. Temperature load and effect analysis of asphalt mixture combustion on steel box girder bridge deck[J]. Journal of Traffic and Transportation Engineering, 2022, 22(6): 182-192. doi: 10.19818/j.cnki.1671-1637.2022.06.012 |
[1] |
MA Ru-jin, CUI Chuan-jie, MA Ming-lei, et al. Numerical simulation and simplified model of vehicle-induced bridge deck fire in the full-open environment considering wind effect[J]. Structure and Infrastructure Engineering, 2021, 17(12): 1698-1709. doi: 10.1080/15732479.2020.1832535
|
[2] |
BOLINA F L, RODRIGUES J P C. Numerical study and proposal of new design equations for steel decking concrete slabs subjected to fire[J]. Engineering Structures, 2022, 253: 113828. doi: 10.1016/j.engstruct.2021.113828
|
[3] |
AHMED A, KHARNOOB M, AKHMADEEV R, et al. Flexural response of steel beams strengthened by fibre-reinforced plastic plate and fire retardant coating at elevated temperatures[J]. Structural Engineering and Mechanics, 2022, 83(4): 551-561.
|
[4] |
SUNTHARALINGAM T, UPASIRI I, NAGARATNAM B, et al. Finite element modelling to predict the fire performance of bio-inspired 3D-printed concrete wall panels exposed to realistic fire[J]. Buildings, 2022, 12(2): 111. doi: 10.3390/buildings12020111
|
[5] |
王选富, 刘子利, 李凡, 等. 火灾下预应力混凝土箱梁温度场研究[J]. 土木工程, 2019, 8(7): 1229-1236. https://www.cnki.com.cn/Article/CJFDTOTAL-DRAW202202027.htm
WANG Xuan-fu, LIU Zi-li, LI Fan, et al. Study on temperature field of prestressed concrete box girder under fire[J]. Hans Journal of Civil Engineering, 2019, 8(7): 1229-1236. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DRAW202202027.htm
|
[6] |
PAYÁ-ZAFORTEZA I, GARLOCK M E M. A numerical investigation on the fire response of a steel girder bridge[J]. Journal of Constructional Steel Research, 2012, 75: 93-103. doi: 10.1016/j.jcsr.2012.03.012
|
[7] |
AZIZ E M, KODUR V K. An approach for evaluating the residual strength of fire exposed bridge girders[J]. Journal of Constructional Steel Research, 2013, 88: 34-42. doi: 10.1016/j.jcsr.2013.04.007
|
[8] |
AZIZ E M, KODUR V K, GLASSMAN J D, et al. Behavior of steel bridge girders under fire conditions[J]. Journal of Constructional Steel Research, 2015, 106: 11-22. doi: 10.1016/j.jcsr.2014.12.001
|
[9] |
张岗, 贺拴海, 王翠娟. 焰流效应下混凝土空心薄壁墩火温时变分布[J]. 交通运输工程学报, 2014, 14(1): 26-34. http://transport.chd.edu.cn/article/id/201401004
ZHANG Gang, HE Shuan-hai, WANG Cui-juan. Time-dependent variation distribution of fire temperature for concrete hollow thin-walled pier affected by flame fluid[J]. Journal of Traffic and Transportation Engineering, 2014, 14(1): 26-34. (in Chinese) http://transport.chd.edu.cn/article/id/201401004
|
[10] |
张岗, 贺拴海, 侯炜, 等. 预应力混凝土桥梁抗火研究综述[J]. 长安大学学报(自然科学版), 2018, 38(6): 1-10. doi: 10.3969/j.issn.1671-8879.2018.06.001
ZHANG Gang, HE Shuan-hai, HOU Wei, et al. Review on fire resistance of prestressed-concrete bridge[J]. Journal of Chang'an University (Natural Science Edition), 2018, 38(6): 1-10. (in Chinese) doi: 10.3969/j.issn.1671-8879.2018.06.001
|
[11] |
张岗, 贺拴海, 宋超杰, 等. 钢结构桥梁抗火研究综述[J]. 中国公路学报, 2021, 34(1): 1-11. doi: 10.3969/j.issn.1001-7372.2021.01.001
ZHANG Gang, HE Shuan-hai, SONG Chao-jie, et al. Review on fire resistance of steel structural bridge girders[J]. China Journal of Highway and Transport, 2021, 34(1): 1-11. (in Chinese) doi: 10.3969/j.issn.1001-7372.2021.01.001
|
[12] |
宋超杰, 张岗, 贺拴海, 等. 钢-混凝土组合连续弯箱梁抗火性能与设计方法[J]. 交通运输工程学报, 2021, 21(4): 139-149. doi: 10.19818/j.cnki.1671-1637.2021.04.010
SONG Chao-jie, ZHANG Gang, HE Shuan-hai, et al. Fire resistance performance and design method of steel-concrete composite continuous curved box girders[J]. Journal of Traffic and Transportation Engineering, 2021, 21(4): 139-149. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2021.04.010
|
[13] |
杨丹, 廖健凯, 赵应. 基于ABAQUS的钢-混凝土组合桥抗火性能分析[J]. 火灾科学, 2020, 29(3): 150-161. https://www.cnki.com.cn/Article/CJFDTOTAL-HZKX202003003.htm
YANG Dan, LIAO Jian-kai, ZHAO Ying. Finite element analysis on fire performance of steel-concrete composite bridges using ABAQUS[J]. Fire Safety Science, 2020, 29(3): 150-161. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HZKX202003003.htm
|
[14] |
郝增恒, 王滔, 王民, 等. 钢桥面铺层温度场分析[J]. 公路交通科技, 2018, 35(11): 36-43. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201811005.htm
HAO Zeng-heng, WANG Tao, WANG Min, et al. Analysis on temperature field of steel bridge deck pavement[J]. Journal of Highway and Transportation Research and Development, 2018, 35(11): 36-43. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201811005.htm
|
[15] |
程怀磊, 刘黎萍, 孙立军. 沥青混合料铺装层现场模量探究——以钢桥面铺装为例[J]. 土木工程学报, 2020, 53(2): 119-128. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202002012.htm
CHENG Huai-lei, LIU Li-ping, SUN Li-jun. A case study on evaluating in-situ layer modulus of asphalt pavement[J]. China Civil Engineering Journal, 2020, 53(2): 119-128. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202002012.htm
|
[16] |
ANASTASIO S, DE VISSCHER J, WAYMAN M, et al. Standardization of the environmental information for asphalt technologies[J]. Transportation Research Procedia, 2016, 14(6): 3542-3551.
|
[17] |
朱世峰, 罗国耀, 张毅, 等. 浇注式沥青施工期钢桥面板温度场研究与监测技术[J]. 桥梁建设, 2021, 51(3): 77-84. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS202103011.htm
ZHU Shi-feng, LUO Guo-yao, ZHANG Yi, et al. Research on temperature field in steel deck plate during gussaphalt placement and monitoring techniques[J]. Bridge Construction, 2021, 51(3): 77-84. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS202103011.htm
|
[18] |
钱振东, 刘阳, 杨亚林, 等. 沥青混凝土高温摊铺下钢梁支座体系温度效应[J]. 中国公路学报, 2022, 35(8): 194-201. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202208018.htm
QIAN Zhen-dong, LIU Yang, YANG Ya-lin, et al. Temperature effect analysis of bridge bearings in a steel beam during high-temperature asphalt concrete pavement paving[J]. China Journal of Highway and Transport, 2022, 35(8): 194-201. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202208018.htm
|
[19] |
LIU Yang, QIAN Zhen-dong, HU Han-zhou. Thermal field characteristic analysis of steel bridge deck during high-temperature asphalt pavement paving[J]. KSCE Journal of Civil Engineering, 2016, 20(7): 2811-2821.
|
[20] |
杨小龙, 申爱琴, 蒋宜馨, 等. 基于阻燃抑烟的纳米黏土改性沥青综述[J]. 交通运输工程学报, 2021, 21(5): 42-61. doi: 10.19818/j.cnki.1671-1637.2021.05.004
YANG Xiao-long, SHEN Ai-qin, JIANG Yi-xin, et al. Review on nano clay modified asphalt based on flame retardant and smoke suppression[J]. Journal of Traffic and Transportation Engineering, 2021, 21(5): 42-61. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2021.05.004
|
[21] |
QIU Jun-ling, YANG Tao, WANG Xiu-ling, et al. Review of the flame retardancy on highway tunnel asphalt pavement[J]. Construction and Building Materials, 2019, 195: 468-482.
|
[22] |
梁晓莉, 姜汶泉, 黄志义, 等. 沥青混合料燃烧试验研究[J]. 公路, 2007(10): 195-198. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL200710046.htm
LIANG Xiao-li, JIANG Wen-quan, HUANG Zhi-yi, et al. A study on asphalt mixture under combustion[J]. Highway, 2007(10): 195-198. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL200710046.htm
|
[23] |
MASOUMI A P, TAJALLI-ARDEKANI E, GOLNESHAN A A. Investigation on performance of an asphalt aolar collector: CFD analysis, experimental validation and neural network modeling[J]. Solar Energy, 2020, 207: 703-719.
|
[24] |
ALONSO-ESTÉBANEZ A, PASCUAL-MUÑOZ P, SAMPEDRO-GARCÍA J L, et al. 3D numerical modelling and experimental validation of an asphalt solar collector[J]. Applied Thermal Engineering, 2017, 126: 678-688.
|
[25] |
马明雷, 马如进, 陈艾荣. 桥面火灾条件下斜拉桥拉索及全桥结构的安全性能[J]. 华南理工大学学报(自然科学版), 2014, 42(10): 117-124. https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG201410020.htm
MA Ming-lei, MA Ru-jin, CHEN Ai-rong. Safety of cables and full structure of a cable-stayed bridge exposed to fires on deck[J]. Journal of South China University of Technology (Natural Science Edition), 2014, 42(10): 117-124. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG201410020.htm
|
[26] |
何昌轩, 孙文州, 向磊, 等. 浇筑式沥青混凝土在G40公路长江大桥钢桥面铺装维修工程的应用[C]//郝增恒, 王民. 首届钢桥面铺装技术研讨会论文集. 北京: 人民交通出版社股份有限公司, 2018: 79-89.
HE Chang-xuan, SUN Wen-zhou, XIANG Lei, et al. Application of guss asphalt concrete in steel deck pavement maintenance engineering for G40 Highway Yangtze River Bridge[C]// HAO Zeng-heng, WANG Min. Proceedings of the First Workshop on Steel Deck Pavement Technology. Beijing: China Communications Press Co., Ltd., 2018: 79-89. (in Chinese)
|
[27] |
张相宁, 安超, 高峰, 等. 高速列车车体结构热力耦合静强度及刚度优化分析[J]. 机车电传动, 2019(3): 85-89. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201903022.htm
ZHANG Xiang-ning, AN Chao, GAO Feng, et al. Optimization analysis of car body structure heat coupling static strength and rigidity for high-speed train[J]. Electric Drive for Locomotives, 2019(3): 85-89. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201903022.htm
|
[28] |
王虎, 陈翔, 王雅. 桥面铺装层温度场的有限元模拟及剪应力分布分析[J]. 徐州工程学院学报(自然科学版), 2020, 35(1): 32-36. https://www.cnki.com.cn/Article/CJFDTOTAL-OXZG202001006.htm
WANG Hu, CHEN Xiang, WANG Ya. Finite element simulation of temperature field and shear stress distribution analysis of bridge deck pavement[J]. Journal of Xuzhou Institute of Technology (Natural Sciences Edition), 2020, 35(1): 32-36. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-OXZG202001006.htm
|
[29] |
王亚飞, 杨宏印, 王莹, 等. 钢箱梁竖向温度梯度模式研究——以武汉市某高架桥钢箱梁为例[J]. 武汉工程大学学报, 2021, 43(2): 202-206. https://www.cnki.com.cn/Article/CJFDTOTAL-WHHG202102016.htm
WANG Ya-fei, YANG Hong-yin, WANG Ying, et al. Vertical temperature gradient model of steel box girder: taking steel box girder of viaduct in Wuhan as study case[J]. Journal of Wuhan Institute of Technology, 2021, 43(2): 202-206. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WHHG202102016.htm
|
[30] |
康俊涛, 王伟. 火灾下大跨度钢桁架拱桥结构性能分析[J]. 哈尔滨工业大学学报, 2020, 52(9): 77-84. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX202009012.htm
KANG Jun-tao, WANG Wei. Analysis of structural performance of long-span steel trussed arch bridge exposed to fire[J]. Journal of Harbin Institute of Technology, 2020, 52(9): 77-84. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX202009012.htm
|