Citation: | QIAN Jian-gu, DAI Yu-chen. Theory and analysis method of lower-bound dynamic shakedown for design of flexible pavement structure[J]. Journal of Traffic and Transportation Engineering, 2023, 23(4): 45-59. doi: 10.19818/j.cnki.1671-1637.2023.04.003 |
[1] |
RAZOUKI S S, EL-JANABI O A. Decrease in the CBR of a gypsiferous soil due to long-term soaking[J]. Quarterly Journal of Engineering Geology, 1999, 32(1): 87-89. doi: 10.1144/GSL.QJEG.1999.032.P1.07
|
[2] |
RAZOUKI S S, KUTTAH D K. Predicting long-term soaked CBR of gypsiferous subgrade soils[J]. Proceedings of the Institution of Civil Engineers-Transport, 2006, 159(3): 135-140. doi: 10.1680/tran.2006.159.3.135
|
[3] |
THAKUR J K, HAN Jie, POKHAREL S K, et al. Performance of geocell-reinforced recycled asphalt pavement (RAP) bases over weak subgrade under cyclic plate loading[J]. Geotextiles and Geomembranes, 2012, 35: 14-24. doi: 10.1016/j.geotexmem.2012.06.004
|
[4] |
FAROOQ K, MUJTABA H. Prediction of California bearing ratio (CBR) and compaction characteristics of granular soils[J]. Acta Geotechnica Slovenica, 2017, 14(1): 62-72.
|
[5] |
ALI H A, TAYABJI S D, LA TORRE F. Calibration of mechanistic-empirical rutting model for in-service pavements[J]. Transportation Research Record, 1998(1629): 159-168.
|
[6] |
COOPER S B, ELSEIFI M, MOHAMMAD L N, et al. Performance and cost-effectiveness of sustainable technologies in flexible pavements using the mechanistic-empirical pavement design guide[J]. Journal of Materials in Civil Engineering, 2012, 24(2): 239-247. doi: 10.1061/(ASCE)MT.1943-5533.0000376
|
[7] |
PEREIRA P, PAIS J. Main flexible pavement and mix design methods in Europe and challenges for the development of an European method[J]. Journal of Traffic and Transportation Engineering (English Edition), 2017, 4(4): 316-346. doi: 10.1016/j.jtte.2017.06.001
|
[8] |
MALLA R B, JOSHI S. Subgrade resilient modulus prediction models for coarse and fine-grained soils based on long-term pavement performance data[J]. International Journal of Pavement Engineering, 2008, 9(6): 431-444. doi: 10.1080/10298430802279835
|
[9] |
LEE J, KIM J, KANG B. Normalized resilient modulus model for subbase and subgrade based on stress-dependent modulus degradation[J]. Journal of Transportation Engineering, 2009, 135(9): 600-610. doi: 10.1061/(ASCE)TE.1943-5436.0000019
|
[10] |
YANG Xiao-hua, WAN Qi, LIU Da-peng, et al. Dynamic characteristics of gravel soil low embankment in Xinjiang[J]. Journal of Traffic and Transportation Engineering, 2019, 19(3): 1-9. (in Chinese) doi: 10.3969/j.issn.1671-1637.2019.03.001
|
[11] |
BROWN S F, BRUNTON J M, STOCK A F. The analytical design of bituminous pavements[J]. Proceedings of the Institution of Civil Engineers, 1985, 79(1): 1-31. doi: 10.1680/iicep.1985.1077
|
[12] |
BROWN S F. Soil mechanics in pavement engineering[J]. Géotechnique, 1996, 46(3): 383-426. doi: 10.1680/geot.1996.46.3.383
|
[13] |
COLLINS I F, BOULBIBANE M. The application of shakedown theory to pavement design[J]. Metals and Materials, 1998, 4(4): 832-837. doi: 10.1007/BF03026408
|
[14] |
SHARP R W, BOOKER J R. Shakedown of pavements under moving surface loads[J]. Journal of Transportation Engineering, 1984, 110(1): 1-14. doi: 10.1061/(ASCE)0733-947X(1984)110:1(1)
|
[15] |
WANG Juan, YU Hai-sui. Development and its application of shakedown theory for road pavements[J]. Rock and Soil Mechanics, 2014, 35(5): 1255-1262, 1268. (in Chinese) doi: 10.16285/j.rsm.2014.05.026
|
[16] |
KRABBENHØFT K, LYAMIN A V, SLOAN S W. Shakedown of a cohesive-frictional half-space subjected to rolling and sliding contact[J]. International Journal of Solids and Structures, 2007, 44(11/12): 3998-4008.
|
[17] |
NGUYEN A D, HACHEMI A, WEICHERT D. Application of the interior-point method to shakedown analysis of pavements[J]. International Journal for Numerical Methods in Engineering, 2008, 75(4): 414-439. doi: 10.1002/nme.2256
|
[18] |
SUN Yang, SHEN Shui-long, LUO Chun-yong. Shakedown analysis of pavement structures based on lower bound theorem[J]. Rock and Soil Mechanics, 2010, 31(11): 3667-3670. (in Chinese) doi: 10.3969/j.issn.1000-7598.2010.11.051
|
[19] |
YU Hai-sui, WANG Juan. Three-dimensional shakedown solutions for cohesive-frictional materials under moving surface loads[J]. International Journal of Solids and Structures, 2012, 49(26): 3797-3807. doi: 10.1016/j.ijsolstr.2012.08.011
|
[20] |
YU Hai-sui, HOSSAIN M Z. Lower bound shakedown analysis of layered pavements using discontinuous stress fields[J]. Computer Methods in Applied Mechanics and Engineering, 1998, 167(3/4): 209-222.
|
[21] |
SCHWARTZ C W, LI Rui, KIM S H, et al. Sensitivity evaluation of MEPDG performance prediction (2013)[R]. Washington DC: Transportation Research Board, 2011.
|
[22] |
ZHOU Ren-yi, QIAN Jian-gu, HUANG Mao-song. Dynamic stress responses to traffic moving loading in the saturated poroelastic ground[C]//ASCE. Advances in Soil Dynamics and Foundation Engineering. Reston: ASCE, 2014: 117-125.
|
[23] |
EASON G. The stresses produced in a semi-infinite solid by a moving surface force[J]. International Journal of Engineering Science, 1965, 2(6): 581-609. doi: 10.1016/0020-7225(65)90038-8
|
[24] |
LYU Zhi, QIAN Jian-gu, SHI Zhen-hao, et al. Dynamic responses of layered poroelastic ground under moving traffic loads considering effects of pavement roughness[J]. Soil Dynamics and Earthquake Engineering, 2020, 130: 105996. doi: 10.1016/j.soildyn.2019.105996
|
[25] |
BLEICH H. Uber die bemessung statisch unbestimmter stahltragwerke unter beruschsichtigung der elastisch- plastischen verhaltens des baustoffes[J]. Journal of Bauingenieur, 1932, 19: 261-269.
|
[26] |
MELAN E. Der spannungsgudstand eines Henky-Mises schen kontinuums bei verlandicher belastung[J]. Sitzungberichte der Ak Wissenschaften Wie, 1938, 147(2): 73-87.
|
[27] |
CHINH P D. An upper bound kinematic approach to the shakedown analysis of structures[J]. Meccanica, 1999, 34(1): 49-56. doi: 10.1023/A:1004427528433
|
[28] |
AMBIRCO J M, BEGLEY M R. Plasticity in fretting contact[J]. Journal of the Mechanics and Physics of Solids, 2000, 48(11): 2391-2417. doi: 10.1016/S0022-5096(99)00103-9
|
[29] |
KÖNIG J A, MAIER G. Shakedown analysis of elastoplastic structures: a review of recent developments[J]. Nuclear Engineering and Design, 1981, 66(1): 81-95. doi: 10.1016/0029-5493(81)90183-7
|
[30] |
PONTER A R S, KARADENIZ S. An extended shakedown theory for structures that suffer cyclic thermal loading, Part 1: theory[J]. Journal of Applied Mechanics, 1985, 52(4): 877-882. doi: 10.1115/1.3169162
|
[31] |
PRAGER W. Bauschinger adaptation of rigid, workhardening trusses[J]. Mechanics Research Communications, 1974, 1(5/6): 253-256.
|
[32] |
LEVINE H S, ARMEN H, WINTER R, et al. Nonlinear behavior of shells of revolution under cyclic loading[J]. Computers and Structures, 1973, 3(3): 589-617. doi: 10.1016/0045-7949(73)90099-0
|
[33] |
CERADINI G. Dynamic shakedown in elastic-plastic bodies[J]. Journal of the Engineering Mechanics Division, 1980, 106(3): 481-499. doi: 10.1061/JMCEA3.0002600
|
[34] |
ROWE P W. Displacement and failure modes of model offshore gravity platforms founded on clay[C]//Spearhead. Proceedings of the Offshore Europe Conference. Aberdeen: Spearhead, 1975: 1-7.
|
[35] |
RAAD L, WEICHERT D, NAJM W. Stability of multilayer systems under repeated loads[J]. Transportation Research Record, 1988(1207): 181-186.
|
[36] |
RAAD L, WEICHERT D, HAIDAR A. Analysis of full-depth asphalt concrete pavements using shakedown theory[J]. Transportation Research Record, 1989(1227): 53-65.
|
[37] |
RAAD L, WEICHERT D, HAIDAR A. Shakedown and fatigue of pavements with granular bases[J]. Transportation Research Record, 1989(1227): 159-172.
|
[38] |
RAAD L, MINASSIAN G. The influence of granular base characteristics on upper bound shakedown of pavement structures[J]. Road Materials and Pavement Design, 2005, 6(1): 53-79. doi: 10.1080/14680629.2005.9689999
|
[39] |
SHIAU S H, YU Hai-sui. Load and displacement prediction for shakedown analysis of layered pavements[J]. Transportation Research Record, 2000(1730): 117-124.
|
[40] |
YU Hai-sui. Three-dimensional analytical solutions for shakedown of cohesive-frictional materials under moving surface loads[J]. Proceedings of the Royal Society A—Mathematical Physical and Engineering Sciences, 2005, 461(2059): 1951-1964. doi: 10.1098/rspa.2005.1445
|
[41] |
WANG Kang-yu, ZHUANG Yan, ZHANG Zhan-rong, et al. Shakedown analysis of railway ballast structure under multiple wheel loads[J]. Journal of Central South University (Science and Technology), 2020, 51(8): 2343-2352. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202008028.htm
|
[42] |
ZHUANG Yan, WANG Kang-yu. Shakedown solutions for pavement structures with Von Mises criterion subjected to Hertz loads[J]. Road Materials and Pavement Design, 2018, 19(3): 710-726. doi: 10.1080/14680629.2017.1301265
|
[43] |
ZHUANG Yan, WANG Meng, WANG Kang-yu. Study on shakedown analysis method of elastic-plastic structures under moving loads structures and its application[J]. Journal of Hunan University (Natural Sciences), 2018, 45(7): 93-102. (in Chinese) doi: 10.16339/j.cnki.hdxbzkb.2018.07.012
|
[44] |
ZHUANG Yan, WANG Kang-yu, DONG Xiao-qiang, et al. Shakedown analysis of ballasted track structure based on load envelope diagram[J]. Journal of Taiyuan University of Technology, 2020, 51(5): 731-736. (in Chinese) doi: 10.16355/j.cnki.issn1007-9432tyut.2020.05.016
|
[45] |
SONG Xiu-guang, ZHANG Ying-chao, ZHUANG Pei-zhi, et al. Optimal calculation method of pavement shakedown limit based on genetic algorithm[J]. Journal of Shandong University (Engineering Science), 2021, 51(5): 1-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDGY202105001.htm
|
[46] |
PONTER A R S, HEARLE A D, JOHNSON K L. Application of the kinematical shakedown theorem to rolling and sliding point contacts[J]. Journal of the Mechanics and Physics of Solids, 1985, 33(4): 339-362. doi: 10.1016/0022-5096(85)90033-X
|
[47] |
COLLINS I F, CLIFFE P F. Shakedown in frictional materials under moving surface loads[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1987, 11(4): 409-420. doi: 10.1002/nag.1610110408
|
[48] |
COLLINS I F, WANG A P, SAUNDERS L R. Shakedown in layered pavements under moving surface loads[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1993, 17(3): 165-174. doi: 10.1002/nag.1610170303
|
[49] |
COLLINS I F, BOULBIBANE M. Geomechanical analysis of unbound pavements based on shakedown theory[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126: 50-59. doi: 10.1061/(ASCE)1090-0241(2000)126:1(50)
|
[50] |
PONTER A R S, ENGELHARDT M. Shakedown limits for a general yield condition: implementation and application for a Von Mises yield condition[J]. European Journal of Mechanics—A/Solids, 2000, 19(3): 423-445. doi: 10.1016/S0997-7538(00)00171-6
|
[51] |
BOULBIBANE M, COLLINS I F, PONTER A R S, et al. Shakedown of unbound pavements[J]. Road Materials and Pavement Design, 2005, 6(1): 81-96. doi: 10.1080/14680629.2005.9690000
|
[52] |
CHEN Hao-feng, PONTER A R S. The linear matching method for shakedown and limit analyses applied to rolling and sliding point contact problems[J]. Road Materials and Pavement Design, 2005, 6(1): 9-30. doi: 10.1080/14680629.2005.9689997
|
[53] |
QIAN Jian-gu, WANG Yong-gang, LIN Zhi-guo, et al. Dynamic shakedown analysis of flexible pavement under traffic moving loading[J]. Procedia Engineering, 2016, 143: 1293-1300. doi: 10.1016/j.proeng.2016.06.140
|
[54] |
QIAN Jian-gu, LIN Han, GU Xiao-qiang, et al. Dynamic shakedown limits for flexible pavement with cross-anisotropic materials[J]. Road Materials and Pavement Design, 2020, 21(2): 310-330.
|
[55] |
WANG Yong-gang, QIAN Jian-gu. Dynamic shakedown lower-bound analysis of three-dimensional half-space under moving load[J]. Rock and Soil Mechanics, 2016, 37(S1): 570-576. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S1074.htm
|
[56] |
QIAN Jian-gu, WANG Yong-gang, WANG Juan, et al. The influence of traffic moving speed on shakedown limits of flexible pavements[J]. International Journal of Pavement Engineering, 2019, 20(2): 233-244.
|
[57] |
QIAN Jian-gu, DAI Yu-chen, HUANG Mao-song. Dynamic shakedown analysis of two-layered pavement under rolling-sliding contact[J]. Soil Dynamics and Earthquake Engineering, 2020, 129: 105958.
|
[58] |
DAI Yu-chen, QIAN Jian-gu, WANG Yong-gang, et al. Dynamic shakedown analysis of flexible pavements under rolling and sliding contact considering moving speed[J]. Procedia Engineering, 2017, 189: 283-290.
|
[59] |
WANG Juan, LIU Shu, YANG Wen-bo. Dynamics shakedown analysis of slab track substructures with reference to critical speed[J]. Soil Dynamics and Earthquake Engineering, 2018, 106: 1-13.
|
[60] |
LIU Shu, WANG Juan. Application of shakedown theory in track substructure design[J]. Proceedings of the Institution of Civil Engineers—Ground Improvement, 2019, 172(2): 116-123.
|
[61] |
WANG Juan, LIU Shu, TANG Xiao-jun. Theoretical solutions for static and dynamic shakedown of cohesive-frictional materials under moving loads[C]//Springer. 7th International Symposium on Environmental Vibration and Transportation Geodynamics (ISEV). Berlin: Springer, 2016: 269-279.
|
[62] |
LIN Han, QIAN Jian-gu, WANG Yong-gang. Dynamic shakedown analysis for anisotropic material under traffic moving loading[M]//Springer. Environmental Vibrations and Transportation Geodynamics. Berlin: Springer. 2018: 159-166.
|
[63] |
JOHNSON K L. Contact mechanics[J]. Journal of Tribology, 1986, 108(4): 659.
|
[64] |
CONNOLLY D N, GIANNOPOULOS A, FORDE M C. Numerical modelling of ground borne vibrations from high speed rail lines on embankments[J]. Soil Dynamics and Earthquake Engineering, 2013, 46: 13-19.
|
[65] |
KOUROUSSIS G, VERLINDEN O, CONTI C. Finite-dynamic model for infinite media: corrected solution of viscous boundary efficiency[J]. Journal of Engineering Mechanics, 2011, 137(7): 509-511.
|
[66] |
WANG Juan, YU Hai-sui. Shakedown analysis for design of flexible pavements under moving loads[J]. Road Materials and Pavement Design, 2013, 14(3): 703-722.
|
[67] |
YU Hai-sui, WANG Juan, LIU Shu. Three-dimensional shakedown solutions for cross-anisotropic cohesive-frictional materials under moving surface loads[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38(4): 331-348.
|
[68] |
TAN Yi-qiu, XIAO Shen-qing, XIONG Xue-tang. Review on detection and prediction methods for pavement skid resistance[J]. Journal of Traffic and Transportation Engineering, 2021, 21(4): 32-47. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2021.04.002
|
[69] |
MA Jian, ZHAO Xiang-mo, HE Shuan-hai, et al. Review of pavement detection technology[J]. Journal of Traffic and Transportation Engineering, 2017, 17(5): 121-137. (in Chinese) http://transport.chd.edu.cn/article/id/201705012
|
[70] |
ZHAO Ji-dong, SLOAN S W, LYAMIN A V, et al. Bounds for shakedown of cohesive-frictional materials under moving surface loads[J]. International Journal of Solids and Structures, 2008, 45(11/12): 3290-3312.
|
[71] |
ZHUANG Yan, WANG Kang-yu. Three-dimensional shakedown analysis of ballasted railway structures under moving surface loads with different load distributions[J]. Soil Dynamics and Earthquake Engineering, 2017, 100: 296-300.
|