Volume 23 Issue 6
Dec.  2023
Turn off MathJax
Article Contents
ZHAO Xiang-mo's team supported by the National Key Research and Development Program of China (2021YFB2501200). Research progress in testing and evaluation technologies for autonomous driving[J]. Journal of Traffic and Transportation Engineering, 2023, 23(6): 10-77. doi: 10.19818/j.cnki.1671-1637.2023.06.002
Citation: ZHAO Xiang-mo's team supported by the National Key Research and Development Program of China (2021YFB2501200). Research progress in testing and evaluation technologies for autonomous driving[J]. Journal of Traffic and Transportation Engineering, 2023, 23(6): 10-77. doi: 10.19818/j.cnki.1671-1637.2023.06.002

Research progress in testing and evaluation technologies for autonomous driving

doi: 10.19818/j.cnki.1671-1637.2023.06.002
Funds:

National Key Research and Development Program of China 2021YFB2501200

  • Received Date: 2023-06-19
  • Publish Date: 2023-12-25
  • In view of the high cost, long cycle, low coverage, and lack of a perfect tool chain for autonomous driving vehicle tests in the actual complex traffic environment, the research status of seven major areas of testing and evaluation technologies for autonomous driving was analyzed, and the future development direction of testing and evaluation technologies for autonomous driving was predicted, including simulation and testing technology of autonomous driving vehicles, simulation and testing technology of traffic flow, hardware-in-the-loop testing technology, field testing technology, intelligence evaluation technology, testing and evaluation tool chain and its system's construction, certification and potential defect detection technology, etc. In terms of simulation and testing of autonomous driving vehicles, the research status of simulation and testing software for autonomous driving, vehicle dynamics models, background vehicle interaction behavior models for testing, simulation and testing of cloud control platform supervision, and standardization of vehicle simulation system was analyzed. The main problems currently existing in the simulation and testing of autonomous driving vehicles were summarized. In terms of simulation and testing of autonomous driving traffic flow, the research status of driving style models for test background vehicles, traffic flow modeling and simulation, traffic scenario generation methods, and acceleration testing methods was summarized, and the future development trend of simulation and testing of autonomous driving traffic flow was predicted. In terms of hardware-in-the-loop testing technology, the human-vehicle-road-loop multi-dimensional digital twin tests and construction methods of the system platform for autonomous driving vehicles were summarized. Typical sensor data from high-definition cameras, millimeter-wave radars, and ultrasonic radars, as well as simulation technology of vehicle-to-vehicle and vehicle-to-road communication signals, were reviewed. In terms of field testing technology, the development status of closed field testing, open road testing, and highway test-related testing fields, testing standards, and key technologies were summarized. In terms of intelligence evaluation technology, the research status of intelligence evaluation methods for autonomous driving was introduced from four aspects: the concept of autonomous driving intelligence, the quantification and evaluation of scene complexity, the intelligence evaluation systems of autonomous driving, and the social cooperation evaluation methods. In terms of testing and evaluation tool chain and system construction, the current situation of the testing and evaluation standard system for autonomous driving was introduced mainly from three aspects: the testing and evaluation tool chain technology, the autonomous driving testing evaluation system, and the current situation of autonomous driving testing standards. Finally, in terms of certification and potential defect detection technology, the current defect detection methods for autonomous driving were reviewed from the definition, cause, classification, and detection of autonomous driving defects. The challenges faced in the safety assurance of autonomous driving vehicles were summarized. Research results show that although the autonomous driving testing and evaluation technology has made great progress, the testing and evaluation standard system is still not perfect, and the existing testing tools and methods fail to meet the testing needs of autonomous driving vehicles at level three and above. The development and application level of virtual simulation and digital twin technology is low, and there are many deficiencies in the degree of simulation, testing efficiency, and vehicle testing ability. In the future, it is necessary to further strengthen the research and development of full-scene and high-fidelity modeling technology and real-time simulation software, establish an online accelerated twin testing system with virtual and real interaction, study the scenario generation and acceleration methods of autonomous driving full-stack hazardous testing, and integrate autonomous driving testing technologies and tools, so as to form a tool chain for autonomous driving testing and evaluation and improve standard specifications.

     

  • Author resume: ZHAO Xiang-mo(1966-), male, professor, PhD, xmzhao@chd.edu.cn
  • loading
  • [1]
    GAO Feng, DUAN Jian-li, HAN Zai-dao, et al. Automatic virtual test technology for intelligent driving systems considering both coverage and efficiency[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 14365-14376. doi: 10.1109/TVT.2020.3033565
    [2]
    DENG Xiao-feng, WANG Run-min, XU Zhi-gang, et al. Development status of intelligent networked automobile testing and demonstration base in China[J]. Auto Industry Research, 2019(1): 6-13. (in Chinese) doi: 10.3969/j.issn.1009-847X.2019.01.001
    [3]
    SUN Hang, LI Zhi-jun, ZHANG Lin-lin, et al. Research on the test and evaluation technique of real roads for automated driving vehicles based on OEDR and ODC[J]. Automotive Engineering, 2022, 44(6): 842-850. (in Chinese)
    [4]
    WANG Jun-min, STEIBER J, SURAMPUDI B. Autonomous ground vehicle control system for high-speed and safe operation[J]. International Journal of Vehicle Autonomous Systems, 2009, 7(1/2): 18-35. doi: 10.1504/IJVAS.2009.027965
    [5]
    PING E P, HUDHA K, JAMALUDDIN H. Hardware-in-the-loop simulation of automatic steering control for lanekeeping manoeuvre: outer-loop and inner-loop control design[J]. International Journal of Vehicle Safety, 2010, 5(1): 35-59. doi: 10.1504/IJVS.2010.035318
    [6]
    ZAKARIA M A, ZAMZURI H, MAMAT R, et al. A path tracking algorithm using future prediction control with spike detection for an autonomous vehicle robot[J]. International Journal of Advanced Robotic Systems, 2013, DOI: 10.5772/56658.
    [7]
    ELBANHAWI M, SIMIC M, JAZAR R. The role of path continuity in lateral vehicle control[J]. Procedia Computer Science, 2015, 60: 1289-1298. doi: 10.1016/j.procs.2015.08.194
    [8]
    RAFFO G V, GOMES G K, NORMEY-RICO J E, et al. A predictive controller for autonomous vehicle path tracking[J]. IEEE Transactions on Intelligent Transportation Systems, 2009, 10(1): 92-102. doi: 10.1109/TITS.2008.2011697
    [9]
    GUO Lie, GE Ping-shu, YANG Xiao-li, et al. Intelligent vehicle trajectory tracking based on neural networks sliding mode control[C]//IEEE. Proceedings 2014 International Conference on Informative and Cybernetics for Computational Social Systems (ICCSS). New York: IEEE, 2014: 57-62.
    [10]
    SCHIEHLEN W O. Computer generation of equations of motion[C]//Springer. Computer Aided Analysis and Optimization of Mechanical System Dynamics. Berlin: Springer, 1984: 183-215.
    [11]
    SCHIEHLEN W O, KREUZER E J. Symbolic computerized derivation of equations of motion[C]//Springer. Dynamics of Multibody Systems: Symposium Munich. Berlin: Springer, 1977: 290-305.
    [12]
    ORLANDEA N, CALAHAN D A, CHACE M A. A sparsity-oriented approach to the dynamic analysis and design of mechanical systems—part 2[J]. Journal of Engineering for Industry, 1977, 99(3): 780-784. doi: 10.1115/1.3439313
    [13]
    CHACE M A. Methods and experience in computer aided design of large-displacement mechanical systems[C]//Springer. Computer Aided Analysis and Optimization of Mechanical System Dynamics. Berlin: Springer, 1984: 233-259.
    [14]
    WANG Jing, YANG Zhi-gang, WANG Yong. A four-degree freedom dynamics model of automotive four-wheel-steering[J]. Journal of Shandong Jiaotong University, 2008, 16(1): 11-15. (in Chinese) doi: 10.3969/j.issn.1672-0032.2008.01.003
    [15]
    LIU Z, PAYRE G, BOURASSA P. Nonlinear oscillations and chaotic motions in a road vehicle system with driver steering control[J]. Nonlinear Dynamics, 1996, 9: 281-304. doi: 10.1007/BF01833746
    [16]
    BLAJER W. An effective solver for absolute variable formulation of multibody dynamics[J]. Computational Mechanics, 1995, 15(5): 460-472. doi: 10.1007/BF00350358
    [17]
    WANG Yang-yang, JIN Xiao-xiong, ZUO Shu-guang, et al. A research on vehicle dynamics simulation platform based on R-W method of multi-body dynamics[J]. Automotive Engineering, 2008, 30(1): 22-25. (in Chinese) doi: 10.3321/j.issn:1000-680X.2008.01.005
    [18]
    JIN Ting, GONG Yun-qiu, WEI Chun-yu. Vehicle dynamics modeling based on vortex[J]. Applied Mechanics and Materials, 2014, 624: 289-292. doi: 10.4028/www.scientific.net/AMM.624.289
    [19]
    HU Jun-qing. Study of the ride dynamics characteristics of the off-road vehicle with two degree of freedom articulated body[D]. Changchun: Jilin University, 2011. (in Chinese)
    [20]
    YANG Huai-guang. Research on modeling and simulation of mars rovers with active suspension system for variable moving conditions[D]. Harbin: Harbin Institute of Technology, 2020. (in Chinese)
    [21]
    WANG Jian-qiang, ZHANG Lei, ZHANG De-zhao, et al. An adaptive longitudinal driving assistance system based on driver characteristics[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(1): 1-12. doi: 10.1109/TITS.2012.2205143
    [22]
    ZHAO Xiao-cong, HE Ren, WANG Jian-qiang. How do drivers respond to driving risk during car-following? Risk-response driver model and its application in human-like longitudinal control[J]. Accident Analysis and Prevention, 2020, 148: 105783. doi: 10.1016/j.aap.2020.105783
    [23]
    WADA T, DOIS, TSURU N, et al. Characterization of expert drivers' last-second braking and its application to a collision avoidance system[J]. IEEE Transactions on Intelligent Transportation Systems, 2010, 11(2): 413-422. doi: 10.1109/TITS.2010.2043672
    [24]
    PAPATHANASOPOULOU V, ANTONIOU C. Towards data-driven car-following models[J]. Transportation Research Part C: Emerging Technologies, 2015, 55: 496-509. doi: 10.1016/j.trc.2015.02.016
    [25]
    YU Rong-jie, ZHANG Rui-ci, AI Hao-an, et al. Personalized driving assistance algorithms: case study of federated learning based forward collision warning[J]. Accident Analysis and Prevention, 2022, 168: 106609. doi: 10.1016/j.aap.2022.106609
    [26]
    KHODAYARI A, GHAFFARI A, KAZEMI R, et al. A modified car-following model based on a neural network model of the human driver effects[J]. IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems and Humans, 2012, 42(6): 1440-1449. doi: 10.1109/TSMCA.2012.2192262
    [27]
    LEFÈVRE S, CARVALHO A, BORRELLI F. A learning-based framework for velocity control in autonomous driving[J]. IEEE Transactions on Automation Science and Engineering, 2016, 13(1): 32-42. doi: 10.1109/TASE.2015.2498192
    [28]
    WANG Wen-shuo, ZHAO Ding, HAN Wei, et al. A learning-based approach for lane departure warning systems with a personalized driver model[J]. IEEE Transactions on Vehicular Technology, 2018, 67(10): 9145-9157. doi: 10.1109/TVT.2018.2854406
    [29]
    ALI Y, HUSSAIN F, BLIEMER M C J, et al. Predicting and explaining lane-changing behaviour using machine learning: a comparative study[J]. Transportation Research Part C: Emerging Technologies, 2022, 145: 103931. doi: 10.1016/j.trc.2022.103931
    [30]
    BUTAKOV V A, IOANNOU P. Personalized driver/vehicle lane change models for ADAS[J]. IEEE Transactions on Vehicular Technology, 2014, 64(10): 4422-4431.
    [31]
    ZHANG Yi-fan, CHEN Xin-hong, WANG Jian-ping, et al. A generative car-following model conditioned on driving styles[J]. Transportation Research Part C: Emerging Technologies, 2022, 145: 103926. doi: 10.1016/j.trc.2022.103926
    [32]
    CHEN Zhi-gui, WANG Xue-song, GUO Qi-ming, et al. Towards human-like speed control in autonomous vehicles: a mountainous freeway case[J]. Accident Analysis and Prevention, 2022, 166: 106566. doi: 10.1016/j.aap.2022.106566
    [33]
    HUANG Jing, JI Zhong-xun, PENG Xiao-yan, et al. Driving style adaptive lane-changing trajectory planning and control[J]. China Journal of Highway and Transport, 2019, 32(6): 226-239, 247. (in Chinese)
    [34]
    REN Guo-qing, ZHANG Yong, LIU Hao, et al. A new lane-changing model with consideration of driving style[J]. International Journal of Intelligent Transportation Systems Research, 2019, 17(3): 181-189. doi: 10.1007/s13177-019-00180-7
    [35]
    ZHANG Yi-fan, XU Qian, WANG Jian-ping, et al. A learning-based discretionary lane-change decision-making model with driving style awareness[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(1): 68-78. doi: 10.1109/TITS.2022.3217673
    [36]
    DESJARDINS C, CHAIB-DRAA B. Cooperative adaptive cruise control: a reinforcement learning approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(4): 1248-1260. doi: 10.1109/TITS.2011.2157145
    [37]
    ZHANG Yi, SUN Ping, YIN Yu-han, et al. Human-like autonomous vehicle speed control by deep reinforcement learning with double Q-learning[C]//IEEE. 2018 IEEE Intelligent Vehicles Symposium (Ⅳ). New York: IEEE, 2018: 1251-1256.
    [38]
    ZHU Bing, JIANG Yuan-de, ZHAO Jian, et al. A car-following control algorithm based on deep reinforcement learning[J]. China Journal of Highway and Transport, 2019, 32(6): 53-60. (in Chinese)
    [39]
    LI Guo-fan, YANG Liang, LI Shen, et al. Human-like decision making of artificial drivers in intelligent transportation systems: an end-to-end driving behavior prediction approach[J]. IEEE Intelligent Transportation Systems Magazine, 2022, 14(6): 188-205. doi: 10.1109/MITS.2021.3085986
    [40]
    HAN Lei, WU Lei, LIANG Fu-jian, et al. A novel end-to-end model for steering behavior prediction of autonomous ego-vehicles using spatial and temporal attention mechanism[J]. Neurocomputing, 2022, 490: 295-311. doi: 10.1016/j.neucom.2021.11.093
    [41]
    WANG Xin-peng, CHEN Zhi-jun, WU Chao-zhong, et al. A method of automatic driving decision for smart car considering driving style[J]. Journal of Transport Information and Safety, 2020, 38(2): 37-46. (in Chinese)
    [42]
    ZHU Mei-xin, WANG Xue-song, WANG Yin-hai. Human-like autonomous car-following model with deep reinforcement learning[J]. Transportation Research Part C: Emerging Technologies, 2018, 97: 348-368. doi: 10.1016/j.trc.2018.10.024
    [43]
    LI Dian-zhao, OKHRIN O. Modified DDPG car-following model with a real-world human driving experience with CARLA simulator[J]. Transportation Research Part C: Emerging Technologies, 2023, 147: 103987. doi: 10.1016/j.trc.2022.103987
    [44]
    JIAO Xin-yu, YANG Dian-ge, JIANG Kun, et al. Driving trajectory curvature prediction of vehicle on highway based on end-to-end learning mechanism[J]. Automotive Engineering, 2018, 40(12): 1494-1499. (in Chinese)
    [45]
    CHEN Long, HU Xue-min, TIAN Wei, et al. Parallel planning: a new motion planning framework for autonomous driving[J]. IEEE/CAA Journal of Automatica Sinica, 2019, 6(1): 236-246. doi: 10.1109/JAS.2018.7511186
    [46]
    ARADI S. Survey of deep reinforcement learning for motion planning of autonomous vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 23(2): 740-759.
    [47]
    KIRAN B R, SOBH I, TALPAERT V, et al. Deep reinforcement learning for autonomous driving: a survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(6): 4909-4926. doi: 10.1109/TITS.2021.3054625
    [48]
    WU Yuan-qing, LIAO Si-qin, LIU Xiang, et al. Deep reinforcement learning on autonomous driving policy with auxiliary critic network[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(7): 3680-3690. doi: 10.1109/TNNLS.2021.3116063
    [49]
    GUO Hong-yu, KEYVAN-EKBATANI M, XIE Kun. Lane change detection and prediction using real-world connected vehicle data[J]. Transportation Research Part C: Emerging Technologies, 2022, 142: 103785. doi: 10.1016/j.trc.2022.103785
    [50]
    LI Guo-fa, QIU Yi-fan, YANG Yi-fan, et al. Lane change strategies for autonomous vehicles: a deep reinforcement learning approach based on transformer[J]. IEEE Transactions on Intelligent Vehicles, 2023, 8(3): 2197-2211. doi: 10.1109/TIV.2022.3227921
    [51]
    CHEN Qi, TANG Si-hai, YANG Qing, et al. Cooper: cooperative perception for connected autonomous vehicles based on 3D point clouds[C]//IEEE. 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS). New York: IEEE, 2019: 514-524.
    [52]
    WANG Chao-jie, GONG Si-yuan, ZHOU An-ye, et al. Cooperative adaptive cruise control for connected autonomous vehicles by factoring communication-related constraints[J]. Transportation Research Procedia, 2019, 38: 242-262. doi: 10.1016/j.trpro.2019.05.014
    [53]
    ARTHURS P, GILLAM L, KRAUSE P, et al. A taxonomy and survey of edge cloud computing for intelligent transportation systems and connected vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 6206-6221. doi: 10.1109/TITS.2021.3084396
    [54]
    WANG Hao-xin, LIU Ting-ting, KIM B, et al. Architectural design alternatives based on cloud/edge/fog computing for connected vehicles[J]. IEEE Communications Surveys and Tutorials, 2020, 22(4): 2349-2377. doi: 10.1109/COMST.2020.3020854
    [55]
    LIANG Si-yuan, WU Hao, ZHEN Li, et al. Edge YOLO: real-time intelligent object detection system based on edge-cloud cooperation in autonomous vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(12): 25345-25360. doi: 10.1109/TITS.2022.3158253
    [56]
    WHAIDUZZAMAN M, SOOKHAK M, GANI A, et al. A survey on vehicular cloud computing[J]. Journal of Network and Computer Applications, 2014, 40: 325-344. doi: 10.1016/j.jnca.2013.08.004
    [57]
    HOU Yun-fei, SELIMAN S M S, WANG En-shu, et al. Cooperative and integrated vehicle and intersection control for energy efficiency (CIVIC-E2)[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(7): 2325-2337. doi: 10.1109/TITS.2017.2785288
    [58]
    KUMAR N, RAHMAN S S, DHAKAD N. Fuzzy inference enabled deep reinforcement learning-based traffic light control for intelligent transportation system[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(8): 4919-4928. doi: 10.1109/TITS.2020.2984033
    [59]
    YUAN Jing, ZHENG Yu, XIE Xing, et al. Driving with knowledge from the physical world[C]//ACM. Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2011: 316-324.
    [60]
    XU Wen-chao, ZHOU Hai-bo, CHENG Nan, et al. Internet of vehicles in big data era[J]. IEEE/CAA Journal of Automatica Sinica, 2017, 5(1): 19-35.
    [61]
    KAIWARTYA O, ABDULLAH A H, CAO Yue, et al. Internet of vehicles: motivation, layered architecture, network model, challenges, and future aspects[J]. IEEE Access, 2016, 4: 5356-5373. doi: 10.1109/ACCESS.2016.2603219
    [62]
    SASAKI K, SUZUKI N, MAKIDO S, et al. Vehicle control system coordinated between cloud and mobile edge computing[C]// IEEE. 2016 55th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE). New York: IEEE, 2016: 1122-1127.
    [63]
    WAN Jia-fu, ZHANG Da-qiang, ZHAO Sheng-jie, et al. Context-aware vehicular cyber-physical systems with cloud support: architecture, challenges, and solutions[J]. IEEE Communications Magazine, 2014, 52(8): 106-113. doi: 10.1109/MCOM.2014.6871677
    [64]
    ZHANG Yang, PENG Guo-xiong, YANG Xiao-guang. Present situation and trend of ITS development in Japan[J]. Journal of China and Foreign Highway, 2003, 23(3): 8-10. (in Chinese) doi: 10.3969/j.issn.1671-2579.2003.03.003
    [65]
    YUAN Jun. Design of driving behavior scoring model based on data mining technology[J]. Information Recording Materials, 2020, 21(10): 153-155. (in Chinese)
    [66]
    ZHANG Zheng. The analysis and design of driving safety guards based on the score of driving behavior in vehicle networking[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2017. (in Chinese)
    [67]
    ZHU Shuang. Research on the automobile insurance ratemaking mode and method based on UBI in the internet of vehicle[D]. Beijing: Beijing Jiaotong University, 2015. (in Chinese)
    [68]
    JIANG Xian-tao, YU F R, SONG Tian, et al. Intelligent resource allocation for video analytics in blockchain-enabled internet of autonomous vehicles with edge computing[J]. IEEE Internet of Things Journal, 2022, 9(16): 14260-14272. doi: 10.1109/JIOT.2020.3026354
    [69]
    ZHU Feng-hua, LYU Yi-sheng, CHEN Yuan-yuan, et al. Parallel transportation systems: toward IoT-enabled smart urban traffic control and management[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(10): 4063-4071. doi: 10.1109/TITS.2019.2934991
    [70]
    WANG Zi-ran, LIAO Xi-shun, ZHAO Xuan-peng, et al. A digital twin paradigm: vehicle-to-cloud based advanced driver assistance systems[C]//IEEE. 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring). New York: IEEE, 2020: 1-6.
    [71]
    ASAM. Project types: learn which project types are available at ASAM[EB/OL]. (2023-03-21)[2023-04-01]. https://www.asam.net/active-projects/project-types.
    [72]
    ASAM. Development process: learn how ASAM standards are developed[EB/OL]. (2023-03-21)[2023-04-01]. https://www.asam.net/active-projects/development-process.
    [73]
    ZHOU Bo-lin, ZHANG Zong-shi, CHEN Chen. ASAM OpenX and scenario based simulation test for autonomous driving[J]. Standard Science, 2021(S1): 110-122. (in Chinese)
    [74]
    C-ASAM. The type of ASAM standard project[EB/OL]. (2022-03-29)[2022-11-03]. http://www.c-asam.net/?s=news-show-id-2.html. (in Chinese)
    [75]
    LU Guang-quan, CHENG Bo, WANG Yun-peng, et al. A car-following model based on quantified homeostatic risk perception[J]. Mathematical Problems in Engineering, 2013, 2013: 408756.
    [76]
    YANG H H, PENG H. Development of an errorable car-following driver model[J]. Vehicle System Dynamics, 2010, 48(6): 751-773. doi: 10.1080/00423110903128524
    [77]
    LINDORFER M, MECKLENBRÄUKER C F, OSTERMAYER G. Modeling the imperfect driver: incorporating human factors in a microscopic traffic model[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(9): 2856-2870. doi: 10.1109/TITS.2017.2765694
    [78]
    CAI Jun-yu, JIANG Hao-bin, WANG Jun-yan. Implementation of the human-like lane changing driver model based on Bi-LSTM[J]. Discrete Dynamics in Nature and Society, 2022, 2022: 9934292.
    [79]
    JULKA S, SOWRIRAJAN V, SCHLOETTERER J, et al. Conditional generative adversarial networks for speed control in trajectory simulation[C]//Springer. 7th International Conference on Machine Learning, Optimization, and Data Science. Berlin: Springer, 2021: 436-450.
    [80]
    LIU Jian-bang, MAO Xin-yu, FANG Yu-qi, et al. A survey on deep-learning approaches for vehicle trajectory prediction in autonomous driving[C]//IEEE. 2021 IEEE International Conference on Robotics and Biomimetics (ROBIO). New York: IEEE, 2021: 978-985.
    [81]
    LIANG Ming, YANG Bin, HU Rui, et al. Learning lane graph representations for motion forecasting[C]//Springer. 16th European Conference on Computer Vision. Berlin: Springer, 2020: 541-556.
    [82]
    VARADARAJAN B, HEFNY A, SRIVASTAVA A, et al. Multipath + + : efficient information fusion and trajectory aggregation for behavior prediction[C]//ICRA. 2022 International Conference on Robotics and Automation (ICRA). New York: ICRA, 2022: 7814-7821.
    [83]
    ALBABA B M, YILDIZ Y. Driver modeling through deep reinforcement learning and behavioral game theory[J]. IEEE Transactions on Control Systems Technology, 2022, 30(2): 885-892. doi: 10.1109/TCST.2021.3075557
    [84]
    SUN Ruo-yu, HU Shao-chi, ZHAO Hui-jing, et al. Human-like highway trajectory modeling based on inverse reinforcement learning[C]//IEEE. 2019 IEEE Intelligent Transportation Systems Conference (ITSC). New York: IEEE, 2019: 1482-1489.
    [85]
    HUANG Zhi-yu, WU Jing-da, LYU Chen. Driving behavior modeling using naturalistic human driving data with inverse reinforcement learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(8): 10239-10251. doi: 10.1109/TITS.2021.3088935
    [86]
    SUN Jian, ZHANG He, ZHOU Hua-jun, et al. Scenario-based test automation for highly automated vehicles: a review and paving the way for systematic safety assurance[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(9): 14088-14103. doi: 10.1109/TITS.2021.3136353
    [87]
    ALTHOFF M, KOSCHI M, MANZINGER S. Common road: composable benchmarks for motion planning on roads[C]// IEEE. 2017 IEEE Intelligent Vehicles Symposium (Ⅳ). New York: IEEE, 2017: 719-726.
    [88]
    SHAH S, DEY D, LOVETT C, et al. Airsim: high-fidelity visual and physical simulation for autonomous vehicles[C]//Springer. Field and Service Robotics: Results of the 11th International Conference. Berlin: Springer, 2018: 621-635.
    [89]
    CARLA. Carla simulator[EB/OL]. (2022-09-12)[2022-11-03]. https://carla.readthedocs.io/en/latest.
    [90]
    FAN Hao-yang, ZHU Fan, LIU Chang-chun, et al. Baidu apollo em motion planner[J]. arXiv, 2018, DOI: 1807.08048.
    [91]
    BENEKOHAL R F, TREITERER J. CARSIM. Car-following model for simulation of traffic in normal and stop-and-go conditions[J]. Transportation Research Record, 1988, 1194: 99-111.
    [92]
    Siemens. Simcenter prescan software[EB/OL]. (2022-09-21) [2022-11-03]. https://plm.sw.siemens.com/en-US/simcenter/autonomous-vehicle-solutions/prescan/.
    [93]
    QI Xiao, NI Ying, XU Yi-ming, et al. Autonomous vehicles' car-following drivability evaluation based on driving behavior spectrum reference model[J]. Transportation Research Record: Journal of the Transportation Research Board, 2021, 2675(7): 129-141. doi: 10.1177/0361198121994857
    [94]
    SONG Zhi-jin, WANG Hui-zi, SUN Jian, et al. Experimental findings with VISSIM and TransModeler for evaluating environmental and safety impacts using micro-simulations[J]. Transportation Research Record: Journal of the Transportation Research Board, 2020, 2674(8): 566-580. doi: 10.1177/0361198120925077
    [95]
    MA Zi-an, SUN Jian, WANG Yun-peng. A two-dimensional simulation model for modelling turning vehicles at mixed-flow intersections[J]. Transportation Research Part C: Emerging Technologies, 2017, 75: 103-119. doi: 10.1016/j.trc.2016.12.005
    [96]
    MA Zi-an, XIE Jian-bo, QI Xiao, et al. Two-dimensional simulation of turning behavior in potential conflict area of mixed-flow intersections[J]. Computer-Aided Civil and Infrastructure Engineering, 2017, 32(5): 412-428. doi: 10.1111/mice.12266
    [97]
    XU Yi-ming, MA Zi-an, SUN Jian. Simulation of turning vehicles' behaviors at mixed-flow intersections based on potential field theory[J]. Transportmetrica B: Transport Dynamics, 2019, 7(1): 498-518. doi: 10.1080/21680566.2018.1447407
    [98]
    SUN Jian, LIU Han, MA Zi-an. Modelling and simulation of highly mixed traffic flow on two-lane two-way urban streets[J]. Simulation Modelling Practice and Theory, 2019, 95: 16-35. doi: 10.1016/j.simpat.2019.04.005
    [99]
    BERGAMINI L, YE Ya-wei, SCHEEL O, et al. SimNet: learning reactive self-driving simulations from real-world observations[C]//IEEE. 2021 IEEE International Conference on Robotics and Automation (ICRA). New York: IEEE, 2021: 5119-5125.
    [100]
    YAN Xin-tao, ZOU Zheng-xia, FENG Shuo, et al. Learning naturalistic driving environment with statistical realism[J]. Nature Communications, 2023, 14: 2037. doi: 10.1038/s41467-023-37677-5
    [101]
    ZHAO Ding, HUANG Xia-nan, PENG Hu-ei, et al. Accelerated evaluation of automated vehicles in car-following maneuvers[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(3): 733-744. doi: 10.1109/TITS.2017.2701846
    [102]
    FENG Shuo, FENG Yi-heng, YU Chun-hui, et al. Testing scenario library generation for connected and automated vehicles, part Ⅰ: methodology[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(3): 1573-1582. doi: 10.1109/TITS.2020.2972211
    [103]
    SUN Jian, ZHOU Hua-jun, XI Hao-chen, et al. Adaptive design of experiments for safety evaluation of automated vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(9): 14497-14508. doi: 10.1109/TITS.2021.3130040
    [104]
    DING Wen-hao, CHEN Bai-ming, LI Bo, et al. Multimodal safety-critical scenarios generation for decision-making algorithms evaluation[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 1551-1558. doi: 10.1109/LRA.2021.3058873
    [105]
    DENG Wei-wen, LI Jiang-kun, REN Bing-tao, et al. A survey on automatic simulation scenario generation methods for autonomous driving[J]. China Journal of Highway and Transport, 2022, 35(1): 316-333. (in Chinese) doi: 10.3969/j.issn.1001-7372.2022.01.027
    [106]
    CHEN Ji-qing, SHU Xiao-xiong, LAN Feng-chong, et al. Construction of autonomous vehicles test scenarios with typical dangerous accident characteristics[J]. Journal of South China University of Technology (Natural Science Edition), 2021, 49(5): 1-8. (in Chinese)
    [107]
    WANG Run-min, ZHU Yu, ZHAO Xiang-mo, et al. Research progress on test scenario of autonomous driving[J]. Journal of Traffic and Transportation Engineering, 2021, 21(2): 21-37. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2021.02.003
    [108]
    ZHU Bing, ZHANG Pei-xing, ZHAO Jian. Clustering evaluation method of autonomous driving safety for multi-dimensional logical scenario[J]. Automotive Engineering, 2020, 42(11): 1458-1463, 1505. (in Chinese)
    [109]
    MENZEL T, BAGSCHIK G, MAURER M. Scenarios for development, test and validation of automated vehicles[C]//IEEE. 2018 IEEE Intelligent Vehicles Symposium (Ⅳ). New York: IEEE, 2018: 1821-1827.
    [110]
    DING Wen-hao, LI Bo, EUN K J, et al. Semantically controllable scene generation with guidance of explicit knowledge[J]. arXiv, 2021, DOI: 2106.04066.
    [111]
    JESENSKI S, STELLET J E, SCHIEGG F, et al. Generation of scenes in intersections for the validation of highly automated driving functions[C]//IEEE. 2019 IEEE Intelligent Vehicles Symposium (Ⅳ). New York: IEEE, 2019: 502-509.
    [112]
    ZHOU Wen-shuai, ZHU Yu, ZHAO Xiang-mo, et al. Vehicle cut-in test case generation methods for testing of autonomous driving on highway[J]. Automobile Technology, 2021(1): 11-18. (in Chinese)
    [113]
    ZHU Yu, ZHAO Xiang-mo, XU Zhi-gang, et al. Automatic generation algorithm of lane-change virtual test scenario on highways for automated vehicles using Monte Carlo simulation[J]. China Journal of Highway and Transport, 2022, 35(3): 89-100. (in Chinese)
    [114]
    DING Wen-hao, CHEN Bai-ming, XU Min-jun, et al. Learning to collide: an adaptive safety-critical scenarios generating method[C]//IEEE. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). New York: IEEE, 2020: 2243-2250.
    [115]
    CHOI S, KIM J, YEO H. TrajGAIL: generating urban vehicle trajectories using generative adversarial imitation learning[J]. Transportation Research Part C: Emerging Technologies, 2021, 128: 103091. doi: 10.1016/j.trc.2021.103091
    [116]
    ZHAO Xiang-mo, ZHAO Yu-yu, JING Shou-cai, et al. Generalization generation of hazardous lane-changing scenarios for automated vehicle testing[J]. Acta Automatica Sinica, 2023, 49(10): 2211-2223. (in Chinese)
    [117]
    YU Rong-jie, TIAN Ye, SUN Jian. Highly automated vehicle virtual testing: a review of recent developments and research frontiers[J]. China Journal of Highway and Transport, 2020, 33(11): 125-138. (in Chinese) doi: 10.3969/j.issn.1001-7372.2020.11.012
    [118]
    ZHU Bing, FAN Tian-xin, ZHAO Jian, et al. Accelerate test method of automated driving system based on hazardous boundary search[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(3): 704-712. (in Chinese)
    [119]
    SAEED A, AB HAMID S H, MUSTAFA M B. The experimental applications of search-based techniques for model-based testing: taxonomy and systematic literature review[J]. Applied Soft Computing, 2016, 49: 1094-1117. doi: 10.1016/j.asoc.2016.08.030
    [120]
    MULLINS G E, STANKIEWICZ P G, HAWTHORNE R C, et al. Adaptive generation of challenging scenarios for testing and evaluation of autonomous vehicles[J]. Journal of Systems and Software, 2018, 137: 197-215. doi: 10.1016/j.jss.2017.10.031
    [121]
    XU Yi-ming, Zou Ya-jie, SUN Jian. Accelerated testing for automated vehicles safety evaluation in cut-in scenarios based on importance sampling, genetic algorithm and simulation applications[J]. Journal of Intelligent and Connected Vehicles, 2018, 1(1): 28-38. doi: 10.1108/JICV-01-2018-0002
    [122]
    ZHAO Ding, LAM H, PENG Hu-ei, et al. Accelerated evaluation of automated vehicles safety in lane-change scenarios based on importance sampling techniques[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(3): 595-607. doi: 10.1109/TITS.2016.2582208
    [123]
    HUANG Zhi-yuan, LAM H, LEBLANC D J, et al. Accelerated evaluation of automated vehicles using piecewise mixture models[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(9): 2845-2855. doi: 10.1109/TITS.2017.2766172
    [124]
    HUANG Zhi-yuan, LAM H, ZHAO Ding. An accelerated testing approach for automated vehicles with background traffic described by joint distributions[C]//IEEE. 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC). New York: IEEE, 2017: 933-938.
    [125]
    ZHANG He, SUN Jian, TIAN Ye. Accelerated testing for highly automated vehicles: a combined method based on importance sampling and normalizing flows[C]//IEEE. 2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC). New York: IEEE, 2022: 574-579.
    [126]
    WANG Xin-peng, PENG Hu-ei, ZHANG Song-an, et al. An interaction-aware evaluation method for highly automated vehicles[C]//IEEE. 2021 IEEE International Intelligent Transportation Systems Conference (ITSC). New York: IEEE, 2021: 394-401.
    [127]
    TUNCALI C E, FAINEKOS G. Rapidly-exploring random trees for testing automated vehicles[C]//IEEE. 2019 IEEE Intelligent Transportation Systems Conference (ITSC). NewYork: IEEE, 2019: 661-666.
    [128]
    KIM Y, TAY S, GUANETTI J, et al. Hardware-in-the-loop for connected automated vehicles testing in real traffic[J]. arXiv, 2019, DOI: 1907.09052.
    [129]
    FENG Shuo, YAN Xin-tao, SUN Hao-wei, et al. Intelligent driving intelligence test for autonomous vehicles with naturalistic and adversarial environment[J]. Nature Communications, 2021, 12: 748. doi: 10.1038/s41467-021-21007-8
    [130]
    ROCKLAGE E, KRAFT H, KARATAS A, et al. Automated scenario generation for regression testing of autonomous vehicles[C]//IEEE. 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC). New York: IEEE, 2017: 476-483.
    [131]
    AMERSBACH C, WINNER H. Defining required and feasible test coverage for scenario-based validation of highly automated vehicles[C]//IEEE. 2019 IEEE Intelligent Transportation Systems Conference (ITSC). New York: IEEE, 2019: 425-430.
    [132]
    SHAFTO M, CONROY M, DOYLE R, et al. Modeling, simulation, information technology and processing roadmap[J]. National Aeronautics and Space Administration, 2010, 11: 1-32.
    [133]
    LIU Da-tong, GUO Kai, WANG Ben-kuan, et al. Summary and perspective survey on digital twin technology[J]. Chinese Journal of Scientific Instrument, 2018, 39(11): 1-10. (in Chinese)
    [134]
    QI Qing-lin, TAO Fei. Digital twin and big data towards smart manufacturing and industry 4.0: 360 degree comparison[J]. IEEE Access, 2018, 6: 3585-3593. doi: 10.1109/ACCESS.2018.2793265
    [135]
    LIAO Xi-shun, WANG Zi-ran, ZHAO Xuan-peng, et al. Cooperative ramp merging design and field implementation: a digital twin approach based on vehicle-to-cloud communication[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(5): 4490-4500. doi: 10.1109/TITS.2020.3045123
    [136]
    SCHROEDER G, STEINMETZ C, PEREIRA C E, et al. Visualising the digital twin using web services and augmented reality[C]//IEEE. 2016 IEEE 14th International Conference on Industrial Informatics (INDIN). New York: IEEE, 2016: 522-527.
    [137]
    WANG Zi-ran, WU Guo-yuan, BORIBOONSOMSIN K, et al. Cooperative ramp merging system: agent-based modeling and simulation using game engine[J]. SAE International Journal of Connected and Automated Vehicles, 2019, 2(2): 115-128.
    [138]
    CHEN Qi, WANG Xu-gang, YANG Jing, et al. Trajectory-following guidance based on a virtual target and an angle constraint[J]. Aerospace Science and Technology, 2019, 87: 448-458. doi: 10.1016/j.ast.2019.02.034
    [139]
    YANG Chun-ying, DONG Jiang-hong, XU Qing, et al. Multi-vehicle experiment platform: a digital twin realization method[C]//IEEE. 2022 IEEE/SICE International Symposium on System Integration (SⅡ). New York: IEEE, 2022: 705-711.
    [140]
    NIAZ A, SHOUKAT M U, JIA Yan-bing, et al. Autonomous driving test method based on digital twin: a survey[C]// IEEE. 2021 International Conference on Computing, Electronic and Electrical Engineering (ICE Cube). New York: IEEE, 2021: 1-7.
    [141]
    HETZER D, MUEHLEISEN M, KOUSARIDAS A, et al. 5G connected and automated driving: use cases and technologies in cross-border environments[C]//IEEE. 2019 European Conference on Networks and Communications (EuCNC). New York: IEEE, 2019: 78-82.
    [142]
    ZHAO Ding, PENG Hu-ei. From the lab to the street: Solving the challenge of accelerating automated vehicle testing[J]. arXiv, 2017, DOI: 1707.04792.
    [143]
    HUANG Wu-ling, WANG Kun-feng, LYU Yi-sheng, et al. Autonomous vehicles testing methods review[C]//IEEE. 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC). New York: IEEE, 2016: 163-168.
    [144]
    GE Yu-ming, WANG Yang, YU Run-dong, et al. Demo: research on test method of autonomous driving based on digital twin[C]//IEEE. 2019 IEEE Vehicular Networking Conference (VNC). New York: IEEE, 2019: 1-2.
    [145]
    SZALAY Z, FICZERE D, TIHANYI V, et al. 5G-enabled autonomous driving demonstration with a V2X scenario-in-the-loop approach[J]. Sensors (Basel), 2020, 20(24): 7344. doi: 10.3390/s20247344
    [146]
    LI Li, WANG Xiao, WANG Kun-feng, et al. Parallel testing of vehicle intelligence via virtual-real interaction[J]. Science Robotics, 2019, 4(28): eaaw4106. doi: 10.1126/scirobotics.aaw4106
    [147]
    VERHOEFF L, VERBURG D J, LUPKER H A, et al. VEHIL: a full-scale test methodology for intelligent transport systems, vehicles and subsystems[C]//IEEE. Proceedings of the IEEE Intelligent Vehicles Symposium 2000. New York: IEEE, 2002: 369-375.
    [148]
    BOCK T, SIEDERSBERGER K H, MAURER M. Vehicle in the loop-augmented reality application for collision mitigation systems[C]//IEEE. Fourth IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR'05). New York: IEEE, 2005: 1-9.
    [149]
    MIQUET C. New test method for reproducible real-time tests of ADAS ECUs: "Vehicle-in-the-Loop" connects real-world vehicles with the virtual world[C]//Springer. 5th International Munich Chassis Symposium 2014. Berlin: Springer, 2014: 575-589.
    [150]
    PFEFFER R, LEICHSENRING T. Continuous development of highly automated driving functions with vehicle-in-the-loop using the example of Euro NCAP scenarios[C]//Springer. Simulation and Testing for Vehicle Technology: 7th Conference. Berlin: Springer, 2016: 33-42.
    [151]
    PARK C, CHUNG S, LEE H. Vehicle-in-the-loop in global coordinates for advanced driver assistance system[J]. Applied Sciences, 2020, 10(8): 2645. doi: 10.3390/app10082645
    [152]
    FAYAZI S A, VAHIDI A, LUCKOW A. A Vehicle-in-the-Loop (VIL) verification of an all-autonomous intersection control scheme[J]. Transportation Research Part C: Emerging Technologies, 2019, 107: 193-210. doi: 10.1016/j.trc.2019.07.027
    [153]
    ITIC. International Transportation Innovation Center[EB/OL]. (2013-09-20)[2022-11-03]. http://www.itic-sc.com.
    [154]
    TETTAMANTI T, SZALAI M, VASS S, et al. Vehicle-in-the-loop test environment for autonomous driving with microscopic traffic simulation[C]//IEEE. 2018 IEEE International Conference on Vehicular Electronics and Safety (ICVES). New York: IEEE, 2018: 1-6.
    [155]
    GRIGGS W, ORDÓNEZ-HURTADO R, RUSSO G, et al. Control Strategies for Advanced Driver Assistance Systems and Autonomous Driving Functions: Development, Testing and Verification[M]. Berlin: Springer, 2018.
    [156]
    SOLMAZ S, HOLZINGER F, MISCHINGER M, et al. Towards Connected and Autonomous Vehicle Highways: Technical, Security and Social Challenges[M]. Berlin: Springer, 2020.
    [157]
    ARD T, GUO Long-xiang, DOLLAR R A, et al. Energy and flow effects of optimal automated driving in mixed traffic: vehicle-in-the-loop experimental results[J]. Transportation Research Part C: Emerging Technologies, 2021, 130: 103168. doi: 10.1016/j.trc.2021.103168
    [158]
    GIETELINK O, PLOEG J, DE SCHUTTER B, et al. VEHIL: a test facility for validation of fault management systems for advanced driver assistance systems[J]. IFAC Proceedings Volumes, 2004, 37(22): 397-402. doi: 10.1016/S1474-6670(17)30376-2
    [159]
    ALBERS A, DVSER T. A new process for configuration and application of complex validation environments using the example of vehicle-in-the-loop at the roller test bench[C]//ASME. Proceedings of the ASME 2010 International Mechanical Engineering Congress and Exposition. New York: ASME, 2010: 807-816.
    [160]
    GALKO C, ROSSI R, SAVATIER X. Vehicle-hardware-in-the-loop system for ADAS prototyping and validation[C]//IEEE. 2014 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS XIV). New York: IEEE, 2014: 329-334.
    [161]
    VERBURG D J, VAN DER KNAAP A C M, PLOEG J. VEHIL: developing and testing intelligent vehicles[C]//IEEE. 2002 Intelligent Vehicle Symposium. New York: IEEE, 2002: 537-544.
    [162]
    MITSCHKE M, WALLENTOWITZ H. Dynamik der Kraftfahrzeuge[M]. Berlin: Springer, 1972.
    [163]
    PACEJKA H B, BESSELINK I J M. Magic formula tyre model with transient properties[J]. Vehicle System Dynamics, 1997, 27(S1): 234-249.
    [164]
    Dürr Group. X-road-curve dynamically tests autonomous cars[EB/OL]. (2018-04-11)[2022-11-03]. https://www.durr-group.com/en/duerrmore/autonomous-driving.
    [165]
    SOLMAZ S, RUDIGIER M, MISCHINGER M. A vehicle-in-the-loop methodology for evaluating automated driving functions in virtual traffic[C]//IEEE. 2020 IEEE Intelligent Vehicles Symposium (Ⅳ). New York: IEEE, 2020: 1465-1471.
    [166]
    ZHAO Xiang-mo, CHENG Jing-jun, XU Zhi-gang, et al. An indoor rapid-testing platform for autonomous vehicle based on vehicle-in-the-loop simulation[J]. China Journal of Highway and Transport, 2019, 32(6): 124-136. (in Chinese)
    [167]
    DIEWALD A, KURZ C, KANNAN P V, et al. Radar target simulation for vehicle-in-the-loop testing[J]. Vehicles, 2021, 3(2): 257-271. doi: 10.3390/vehicles3020016
    [168]
    SCHYR C, BRISSARD A. Driving cube-a novel concept for validation of powertrain and steering systems with automated driving[C]//CRC Press. In Proceedings of the 13th International Symposium on Advanced Vehicle Control (AVEC'16). Boca Raton: CRC Press, 2016: 79-84.
    [169]
    LI He-xuan, NALIC D, MAKKAPATI V, et al. A real-time co-simulation framework for virtual test and validation on a high dynamic vehicle test bed[C]//IEEE. 2021 IEEE Intelligent Vehicles Symposium (Ⅳ). New York: IEEE, 2021: 1132-1137.
    [170]
    VAN BRUMMELEN J, O'BRIEN M, GRUYER D, et al. Autonomous vehicle perception: the technology of today and tomorrow[J]. Transportation Research Part C: Emerging Technologies, 2018, 89: 384-406. doi: 10.1016/j.trc.2018.02.012
    [171]
    WANG Xiao-gang. Intelligent multi-camera video surveillance: a review[J]. Pattern Recognition Letters, 2013, 34(1): 3-19. doi: 10.1016/j.patrec.2012.07.005
    [172]
    HASCH J, TOPAK E, SCHNABEL R, et al. Millimeter-wave technology for automotive radar sensors in the 77 GHz frequency band[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(3): 845-860. doi: 10.1109/TMTT.2011.2178427
    [173]
    WANG Wen-wei. Research and implementation of drum-based intelligent vehicle-in-the-loop accelerated evaluation[D]. Xi'an: Chang'an University, 2020. (in Chinese)
    [174]
    YU Hong-feng, WANG Yu-peng, HUA Dian, et al. Camera ADAS HIL simulation and study[J]. Automobile Electric Parts, 2019(12): 4-7. (in Chinese)
    [175]
    ZHOU Hai-bo, XU Wen-chao, CHEN Jia-cheng, et al. Evolutionary V2X technologies toward the Internet of vehicles: challenges and opportunities[J]. Proceedings of the IEEE, 2020, 108(2): 308-323. doi: 10.1109/JPROC.2019.2961937
    [176]
    LIU Tian-yang, YU Zhuo-ping, XIONG Lu, et al. Current development status and construction advice for proving ground of intelligent and connected vehicles[J]. Automobile Technology, 2017(1): 7-11, 32. (in Chinese) doi: 10.3969/j.issn.1000-3703.2017.01.002
    [177]
    LI Xiao-chi, ZHAO Xiang-mo, XU Zhi-gang, et al. Modular flexible test bed for intelligent and connected transportation system[J]. China Journal of Highway and Transport, 2019, 32(6): 137-146. (in Chinese)
    [178]
    DUAN Xu-ting, YANG Yue, TIAN Da-xin, et al. A V2X communication system and its performance evaluation test bed[C]// IEEE. 2014 IEEE 6th International Symposium on Wireless Vehicular Communications (WiVeC 2014). New York: IEEE, 2014: 1-2.
    [179]
    SHI Meng-kai, LU Chang, ZHANG Yi, et al. DSRC and LTE-V communication performance evaluation and improvement based on typical V2X application at intersection[C]//IEEE. 2017 Chinese Automation Congress (CAC). New York: IEEE, 2017: 556-561.
    [180]
    CHEN Zi-xuan, MA Wan-jing, HAO Ruo-chen, et al. Hardware-in-the-loop simulation testbed for intelligent and connected vehicle[C]//Technical Committee on Annual Conference of ITS China. The 13th Annual Conference of ITS China. Beijing: Technical Committee on Annual Conference of ITS China, 2018: 54-63. (in Chinese)
    [181]
    WANG Run-min, ZHANG Xin-rui, WANG You-dao, et al. Research and practice on construction technology of closed test field autonomous driving[J]. Automobile Applied Technology, 2020(4): 33-36. (in Chinese)
    [182]
    QIAO Guan-dong. Research on advantages and application of BIM technology in urban road design[J]. Construction and Design for Engineering, 2023(4): 91-93. (in Chinese)
    [183]
    BAO Xiu-zhi, CHEN Xin-wang, LU Ming-yue. Photogrammetric methods for real three-dimensional graphics of buildings[J]. Railway Investigation and Surveying, 1996(3): 1-4. (in Chinese)
    [184]
    THORN E, KIMMEL S C, CHAKA M, et al. A framework for automated driving system testable cases and scenarios[R]. Washington DC: National Highway Traffic Safety Administration, 2018.
    [185]
    ZACHMAN J A. A framework for information systems architecture[J]. IBM Systems Journal, 1987, 26(3): 276-292. doi: 10.1147/sj.263.0276
    [186]
    SPEWAK S H, HILL S C. Enterprise Architecture Planning: Developing a Blueprint for Data, Applications and Technology[M]. Boston: QED Pub. Group, 1993.
    [187]
    CHETAL A. Federal enterprise architecture[J]. Alphascript Publishing, 2002, 46(4): 258-274.
    [188]
    LAGERSTRÖM R, SOMMESTAD T, BUSCHLE M, et al. Enterprise architecture management's impact on information technology success[C]// IEEE. 2011 44th Hawaii International Conference on System Sciences. New York: IEEE, 2011: 1-10.
    [189]
    SIMON G A. DoD (department of defense) protocol reference model[R]. Santa Monica: System Development Corporation, 1982.
    [190]
    WOOD W G, BARBACCI M, CLEMENTS P, et al. DoD architecture framework and software architecture workshop report[R]. Pittsburgh: Software Engineering Institute of Carnegie Mellon University, 2003.
    [191]
    SUN Yu-sheng, LIU Lin, XUE Tong. Comparative research on IT planning reference model[J]. Computer and Digital Engineering, 2019, 47(11): 2771-2779, 2823. (in Chinese) doi: 10.3969/j.issn.1672-9722.2019.11.026
    [192]
    LENG Bing-bo. The automobile manufacturing industry information system integration application research based on EA[D]. Shenyang: Shenyang Normal University, 2013. (in Chinese)
    [193]
    ZHAO Xiang-mo, GAO Ying, XU Zhi-gang, et al. IntelliWay: an integrated architecture and testing methodology for intelligent highway using varied coupling modularization[J]. China Journal of Highway and Transport, 2023, 36(1): 176-201. (in Chinese) doi: 10.3969/j.issn.1001-7372.2023.01.015
    [194]
    WANG Xiao-yi, LI Jun-cheng, MA Xue-han. Research on test case construction method of autonomous vehicle perception system[J]. Quality and Standardization, 2022(1): 51-54. (in Chinese)
    [195]
    XIA Qin, DUAN Jian-li, GAO Feng, et al. Test scenario design for intelligent driving system ensuring coverage and effectiveness[J]. International Journal of Automotive Technology, 2018, 19(4): 751-758. doi: 10.1007/s12239-018-0072-6
    [196]
    ZOFKA M R, KUHNT F, KOHLHAAS R, et al. Data-driven simulation and parametrization of traffic scenarios for the development of advanced driver assistance systems[C]//IEEE. 2015 18th International Conference on Information Fusion (Fusion). New York: IEEE, 2015: 1422-1428.
    [197]
    AN Ze-ping, HE Jing, YAO Xiang-lin. Research on the construction of expressway intelligent vehicle infrastructure cooperative systems application scenario library[J]. Highway, 2021, 66(12): 270-274. (in Chinese)
    [198]
    MA Ya-fang, WANG Wen-jie, GU Ke, et al. Test and analysis of autonomous driving function of intelligent and connected vehicles[J]. Auto Time, 2021(23): 38-39, 46. (in Chinese) doi: 10.3969/j.issn.1672-9668.2021.23.017
    [199]
    LIU Xin. Ministry of industry and information technology: standardizing intelligent networked vehicle road test and demonstration application[J]. China Plant Engineering, 2021(16): 1. (in Chinese)
    [200]
    LI Li, HUANG Wu-ling, LIU Yue-hu, et al. Intelligence testing for autonomous vehicles: a new approach[J]. IEEE Transactions on Intelligent Vehicles, 2016, 1(2): 158-166. doi: 10.1109/TIV.2016.2608003
    [201]
    LI Li, LIN Yi-lun, ZHENG Nan-ning, et al. Artificial intelligence test: a case study of intelligent vehicles[J]. Artificial Intelligence Review, 2018, 50(3): 441-465. doi: 10.1007/s10462-018-9631-5
    [202]
    WOOLDRIDGE M, JENNINGS N R. Intelligent agents: theory and practice[J]. The Knowledge Engineering Review, 1995, 10(2): 115-152. doi: 10.1017/S0269888900008122
    [203]
    HUANG Hui-ming, PAVEK K, NOVAK B, et al. A framework for autonomy levels for unmanned systems (ALFUS)[C]//AUVSI. Proceedings of the AUVSI's unmanned systems North America. New York: AUVSI, 2005: 849-863.
    [204]
    NAGAI M S, INOUE H. Research into ADAS with autonomous driving intelligence for future innovation[C]//Springer. 5th International Munich Chassis Symposium 2014. Berlin: Springer, 2014: 779-793.
    [205]
    PAYALAN Y F, GUVENSAN M A. Towards next-generation vehicles featuring the vehicle intelligence[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(1): 30-47. doi: 10.1109/TITS.2019.2917866
    [206]
    WU Xin-zheng, XING Xing-yu, CHEN Jun-yi, et al. Risk assessment method for driving scenarios of autonomous vehicles based on drivable area[C]//IEEE. 2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC). New York: IEEE, 2022: 2206-2213.
    [207]
    MENG Hao-lan, CHEN Jun-yi, WANG Bin, et al. Effect of negative stimulus caused by vehicle maneuver on passenger's expectation[J]. Journal of Tongji University (Natural Science), 2022, 50(5): 759-766. (in Chinese)
    [208]
    BELLEM H, THIEL B, SCHRAUF M, et al. Comfort in automated driving: an analysis of preferences for different automated driving styles and their dependence on personality traits[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2018, 55: 90-100. doi: 10.1016/j.trf.2018.02.036
    [209]
    MA Yi-ning, SUN Chen, CHEN Jun-yi, et al. Verification and validation methods for decision-making and planning of automated vehicles: a review[J]. IEEE Transactions on Intelligent Vehicles, 2022, 7(3): 480-498. doi: 10.1109/TIV.2022.3196396
    [210]
    MENG Hao-lan, CHEN Jun-yi, FENG Tian-yue, et al. An interactive car-following model (ICFM) for the harmony-with-traffic evaluation of autonomous vehicles[C]//SAE International. 2023 WCX SAE World Congress Experience. Warrendale: SAE International, 2023: 01881765.
    [211]
    ZHU Xi-chan, WEI Hao-zhou, MA Zhi-xiong. Assessment of the potential risk in car-following scenario based on naturalistic driving data[J]. China Journal of Highway and Transport, 2020, 33(4): 169-181. (in Chinese) doi: 10.3969/j.issn.1001-7372.2020.04.017
    [212]
    SHALEV-SHWARTZ S, SHAMMAH S, SHASHUA A. On a formal model of safe and scalable self-driving cars[J]. arxiv, 2017, DOI: 1708.06374.
    [213]
    BAE I, MOON J, SEO J. Toward a comfortable driving experience for a self-driving shuttle bus[J]. Electronics, 2019, 8(9): 943. doi: 10.3390/electronics8090943
    [214]
    TASHIRO M, MOTOYAMA H, ICHIOKA Y, et al. Simulation analysis on optimal merging control of connected vehicles for minimizing travel time[J]. International Journal of Intelligent Transportation Systems Research, 2020, 18(1): 65-76. doi: 10.1007/s13177-018-0172-8
    [215]
    CHU K, LEE M, SUNWOO M. Local path planning for off-road autonomous driving with avoidance of static obstacles[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(4): 1599-1616. doi: 10.1109/TITS.2012.2198214
    [216]
    CHAI Chen, ZENG Xian-ming, WU Xiang-bin, et al. Evaluation and optimization of responsibility-sensitive safety models on autonomous car-following maneuvers[J]. Transportation Research Record, 2020, 2674(11): 662-673. doi: 10.1177/0361198120948507
    [217]
    CAO Peng, XU Zhan-dong, FAN Qiao-chu, et al. Analysing driving efficiency of mandatory lane change decision for autonomous vehicles[J]. IET Intelligent Transport Systems, 2019, 13(3): 506-514. doi: 10.1049/iet-its.2018.5253
    [218]
    CHEN Bai-ming, CHEN Xiang, WU Qiong, et al. Adversarial evaluation of autonomous vehicles in lane-change scenarios[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(8): 10333-10342. doi: 10.1109/TITS.2021.3091477
    [219]
    MENG Hao-lan, CHEN Jun-yi, XING Xing-yu, et al. Study on objective representation of passenger discomfort[J]. Journal of Tongji University (Natural Science), 2019, 47(S1): 54-63. (in Chinese)
    [220]
    SUN Yang, XIONG Guang-ming, CHEN Hui-yan, et al. A cost function-oriented quantitative evaluation method for unmanned ground vehicles[J]. Advanced Materials Research, 2011, 301/302/303: 701-706.
    [221]
    SUN Yang, YANG He, MENG Fei. Research on an intelligent behavior evaluation system for unmanned ground vehicles[J]. Energies, 2018, 11(7): 1764. doi: 10.3390/en11071764
    [222]
    PAN Ang, ZHANG Xin, IRYO-ASANO M, et al. Efficiency and safety evaluation of left-turn vehicles and crossing pedestrians in signalized intersections under the autonomous vehicle mixed flow condition[J]. International Journal of Intelligent Transportation Systems Research, 2022, 20(1): 103-116. doi: 10.1007/s13177-021-00276-z
    [223]
    CHEN Jun-yi, CHEN Lei, MENG Hao-lan, et al. Evaluation method of the harmony with traffic in two-vehicle interaction scenarios[J]. Automobile Technology, 2020(11): 1-7. (in Chinese)
    [224]
    XIA Qin, DUAN Jian-li, GAO Feng, et al. Automatic generation method of test scenario for ADAS based on complexity[C]//SAE International. SAE Intelligent and Connected Vehicles Symposium. Warrendale: SAE International, 2017: 1-9.
    [225]
    MA Yi-ning, JIANG Wei, WU Jing-yu, et al. Self-evolution scenarios for simulation tests of autonomous vehicles based on different models of driving styles[J]. China Journal of Highway and Transport, 2023, 36(2): 216-228. (in Chinese)
    [226]
    XING Jing, MANNING C A. Complexity and automation displays of air traffic control: literature review and analysis[R]. Washington DC: US Department of Transportation, 2005.
    [227]
    XING Jing. Measures of information complexity and the implications for automation design[R]. Washington DC: US Department of Transportation, 2004.
    [228]
    CASTI J L. Connectivity, Complexity and Catastrophe in Large-Scale Systems[M]. New York: John Wiley and Sons, 1979.
    [229]
    CRUTCHFIELD J P, YOUNG K. Inferring statistical complexity[J]. Physical Review Letters, 1989, 63(2): 105-108. doi: 10.1103/PhysRevLett.63.105
    [230]
    SUSSMAN J M. The new transportation faculty: the evolution to engineering systems[J]. Transportation Quarterly, 1999, 53(3): 15-26.
    [231]
    MA Yi-ning, PAN Xin-fu, XIONG Lu, et al. Definition and quantification of the complexity experienced by autonomous vehicles in the environment and driving task[C]// CICTP. 2020 COTA International Conference of Transportation Professionals. Reston: CICTP, 2020: 1030-1042.
    [232]
    ZHANG Ling-tong, MA Yi-ning, XING Xing-yu, et al. Research on the complexity quantification method of driving scenarios based on information entropy[C]//IEEE. 2021 IEEE International Intelligent Transportation Systems Conference (ITSC). New York: IEEE, 2021: 3476-3481.
    [233]
    BOELHOUWER A, BEUKEL A P V D, VOORT M C, et al. Determining infrastructure-and traffic factors that increase the perceived complexity of driving situations[C]//Springer. Advances in Human Aspects of Transportation: Proceedings of the AHFE 2020 Virtual Conference on Human Aspects of Transportation. Berlin: Springer, 2020: 3-10.
    [234]
    LIU Yong-kang, HANSEN J H L. Towards complexity level classification of driving scenarios using environmental information[C]//IEEE. 2019 IEEE Intelligent Transportation Systems Conference (ITSC). New York: IEEE, 2019: 810-815.
    [235]
    COVER T M, THOMAS J A. Elements of Information Theory[M]. New York: John Wiley and Sons, 2001.
    [236]
    MUELLER J, STANLEY L, MARTIN T, et al. Driving simulator and scenario effects on driver response[C]//ⅡSE. Proceedings of the 2014 Industrial and Systems Engineering Research Conference. Montreal: ⅡSE, 2014: 507-513.
    [237]
    WANG Jia-jie, ZHANG Chi, LIU Yue-hu, et al. Traffic sensory data classification by quantifying scenario complexity[C]//IEEE. 2018 IEEE Intelligent Vehicles Symposium (Ⅳ). New York: IEEE, 2018: 1543-1548.
    [238]
    GAO Feng, DUAN Jian-li, HE Ying-dong, et al. A test scenario automatic generation strategy for intelligent driving systems[J]. Mathematical Problems in Engineering, 2019, 2019: 1-10.
    [239]
    LOWRIE J W, THOMAS M, GREMBAN K, et al. The autonomous land vehicle (ALV) preliminary road-following demonstration[C]//SPIE. Intelligent Robots and Computer Vision Ⅳ. Washington DC: SPIE, 1985: 336-350.
    [240]
    POMERLEAU D. RALPH: rapidly adapting lateral position handler[C]//IEEE. Proceedings of the Intelligent Vehicles' 95. Symposium. New York: IEEE, 2002: 506-511.
    [241]
    BROGGI A, BERTOZZI M, FASCIOLI A. ARGO and the Mille Miglia in automatico tour[J]. IEEE Intelligent Systems and Their Applications, 1999, 14(1): 55-64. doi: 10.1109/5254.747906
    [242]
    MAURER M, BEHRINGER R, FURST S, et al. A compact vision system for road vehicle guidance[C]//IEEE. Proceedings of 13th International Conference on Pattern Recognition. New York: IEEE, 1996: 313-317.
    [243]
    MCWILLIAMS G T, BROWN M A, LAMM R D, et al. Evaluation of autonomy in recent ground vehicles using the autonomy levels for unmanned systems (ALFUS) framework[C]// IEEE. Proceedings of the 2007 Workshop on Performance Metrics for Intelligent Systems. New York: ACM, 2007: 54-61.
    [244]
    WANG Yue-chao, LIU Jin-guo. Evaluation methods for the autonomy of unmanned systems[J]. Chinese science bulletin, 2012, 57(26): 3409-3418. doi: 10.1007/s11434-012-5183-2
    [245]
    SUN Yang, CHEN Hui-yan. Research on test and evaluation of unmanned ground vehicles[J]. Acta Armamentarii, 2015, 36(6): 978-986. doi: 10.3969/j.issn.1000-1093.2015.06.003
    [246]
    CEHN Jun-yi, LI Ru-bing, XING Xing-yu, et al. Survey on intelligence evaluation of autonomous vehicles[J]. Journal of Tongji University (Natural Science), 2019, 47(12): 1785-1790, 1824. (in Chinese) doi: 10.11908/j.issn.0253-374x.2019.12.014
    [247]
    MENG Hao-lan, CHEN Jun-yi, CHEN Lei, et al. Clustering analysis of typical ramp scenarios based on naturalistic driving data[J]. Journal of Tongji University (Natural Science), 2021, 49(S1): 123-131. (in Chinese)
    [248]
    WEI Jun-qing, DOLAN J M, LITKOUHI B. Autonomous vehicle social behavior for highway entrance ramp management[C]//IEEE. 2013 IEEE Intelligent Vehicles Symposium (Ⅳ). New York: IEEE, 2013: 201-207.
    [249]
    LETTER C, ELEFTERIADOU L. Efficient control of fully automated connected vehicles at freeway merge segments[J]. Transportation Research Part C: Emerging Technologies, 2017, 80: 190-205. doi: 10.1016/j.trc.2017.04.015
    [250]
    NTOUSAKIS I A, NIKOLOS I K, PAPAGEORGIOU M. Optimal vehicle trajectory planning in the context of cooperative merging on highways[J]. Transportation Research Part C: Emerging Technologies, 2016, 71: 464-488. doi: 10.1016/j.trc.2016.08.007
    [251]
    PARMAR H, CHAKROBORTY P, KUNDU D. Modelling automobile drivers' toll-lane choice behaviour at a toll plaza using mixed logit model[J]. Procedia-Social and Behavioral Sciences, 2013, 104: 593-600. doi: 10.1016/j.sbspro.2013.11.153
    [252]
    CHEN Jun-yi, CHEN Lei, MENG Hao-lan, et al. Evaluation model of harmony with traffic based on neural network[J]. Journal of Tongji University (Natural Science), 2021, 49(1): 135-141. (in Chinese)
    [253]
    VIRES. Virtual test drive[EB/OL]. (2022-11-11)[2022-11-03]. https://hexagon.com/products/virtual-test-drive.
    [254]
    NVIDIA. NVIDIA drive end-to-end solutions for autonomous vehicles[EB/OL]. (2022-01-13)[2022-11-03]. https://developer.nvidia.com/drive.
    [255]
    OICA. Future certification of automated/autonomous driving Systems[EB/OL]. (2019-01-28)[2022-11-03]. https://unece.org/fileadmin/DAM/trans/doc/2019/wp29grva/GRVA-02-09e.pdf.
    [256]
    WANG Run-min, ZHAO Xiang-mo, XU Zhi-gang, et al. Design of virtual simulation test platform based on vehicle-in-the-loop for automatic driving[J]. Automobile Technology, 2022(4): 1-7. (in Chinese)
    [257]
    SON T D, BHAVE A, VAN DER AUWERAER H. Simulation-based testing framework for autonomous driving development[C]// IEEE. 2019 IEEE International Conference on Mechatronics (ICM), New York: IEEE, 2019: 576-583.
    [258]
    LIU Fa-wang, CAO Jian-yong, ZHANG Zhi-qiang, et al. A scenario-based "three-pillar" safety testing and assessment method for intelligent and connected vehicles[J]. Chinese Journal of Automotive Engineering, 2023, 13(1): 1-7. (in Chinese)
    [259]
    KIM B J, LEE S B. Safety evaluation of autonomous vehicles for a comparative study of camera image distance information and dynamic characteristics measuring equipment[J]. IEEE Access, 2022, 10: 18486-18506. doi: 10.1109/ACCESS.2022.3151075
    [260]
    ZHANG Pei-xing, ZHU Bing, ZHAO Jian, et al. Safety evaluation method in multi-logical scenarios for automated vehicles based on naturalistic driving trajectory[J]. Accident Analysis and Prevention, 2023, 180: 106926. doi: 10.1016/j.aap.2022.106926
    [261]
    WU Sheng-hao, ZHENG Su-li, YANG Lu-qi. Development trend of standardization of overseas autonomous vehicles and its enlightenment to China[J]. Standard Science, 2021(11): 16-24. (in Chinese) doi: 10.3969/j.issn.1674-5698.2021.11.003
    [262]
    HE Jin-peng, MA Fang-wu, LIU Wei-guo, et al. Comparative test between ISO 15623 on forward vehicle collision warning system and NHTSA 26555 assessment program[J]. Automobile Technology, 2014(7): 28-33. (in Chinese)
    [263]
    CAO Jian-yong, CAO Yin, ZHANG Jian-wen. Analysis of vehicle active safety testing technology based on Euro-NCAP[J]. Quality and Standardization, 2016(3): 55-58. (in Chinese)
    [264]
    TANG Bo. Advanced crash test technology of ANCAP[J]. Automobile and Parts, 2013(9): 21-23. (in Chinese)
    [265]
    GUO Fei, ZHAO Lei, DANG Guo-feng. Research on automobile detection organization and C-NCAP system[J]. Science and Technology Industry Parks, 2019(7): 36-37. (in Chinese)
    [266]
    PEREZ M A, KIEFER R J, HASKINS A, et al. Evaluation of forward collision warning system visual alert candidates and SAE J2400[J]. SAE International Journal of Passenger Cars-Mechanical Systems, 2009, 2(1): 750-764. doi: 10.4271/2009-01-0547
    [267]
    LI Hai-yan, YANG Zhen, HE Li-juan, et al. Comparative study and prospect of pedestrian protection assessment in global NCAP[J]. Automotive Engineering, 2021, 43(5): 730-738. (in Chinese)
    [268]
    WANG Yu-mei, GUO Qing-xiang. Effect on updated Euro-NCAP on safety evaluation for a passenger car[J]. Automotive Engineer, 2014(4): 18-22. (in Chinese) doi: 10.3969/j.issn.1674-6546.2014.04.003
    [269]
    LIN Gao-ze, YANG Hai-yan, ZHOU Da-yong, et al. Pedestrian protection test method comparison between E-NCAP V8.0 and J-NCAP[J]. Automotive Engineer, 2015(12): 13-17. (in Chinese)
    [270]
    WANG Yun-peng. Insisting on safety base line and enhancing regulation innovation—build an inclusive and prudent vehicle safety sandbox regulatory system[J]. Research on China Market Supervision, 2022(4): 5-6, 54. (in Chinese)
    [271]
    WANG Le-bing. Defects in autonomous vehicles and their product liability[J]. Tsinghua Law Review, 2020, 14(2): 93-112. (in Chinese)
    [272]
    GAO Zhi-wei, CECATI C, DING S X. A survey of fault diagnosis and fault-tolerant techniques—part Ⅰ: fault diagnosis with model-based and signal-based approaches[J]. IEEE Transactions on Industrial Electronics, 2015, 62(6): 3757-3767. doi: 10.1109/TIE.2015.2417501
    [273]
    JIANG Yu-chen, YIN Shen, KAYNAK O. Optimized design of parity relation-based residual generator for fault detection: data-driven approaches[J]. IEEE Transactions on Industrial Informatics, 2021, 17(2): 1449-1458. doi: 10.1109/TII.2020.2987840
    [274]
    ZHANG Zi-long, ZHAO Zhi-bin, LI Xiao-long, et al. Faster multiscale dictionary learning method with adaptive parameter estimation for fault diagnosis of traction motor bearings[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 70: 3504113.
    [275]
    CHOI K, KIM Y, KIM S K, et al. Current and position sensor fault diagnosis algorithm for PMSM drives based on robust state observer[J]. IEEE Transactions on Industrial Electronics, 2021, 68(6): 5227-5236. doi: 10.1109/TIE.2020.2992977
    [276]
    GAO Zhi-wei, CECATI C, DING S X. A survey of fault diagnosis and fault-tolerant techniques—part Ⅱ: fault diagnosis with knowledge-based and hybrid/active approaches[J]. IEEE Transactions on Industrial Electronics, 2015, 62(6): 3768-3774.
    [277]
    BEN LAKHAL N M, ADOUANE L, NASRI O, et al. Interval-based solutions for reliable and safe navigation of intelligent autonomous vehicles[C]//IEEE. 2019 12th International Workshop on Robot Motion and Control (RoMoCo). New York: IEEE, 2019: 124-130.
    [278]
    BANDO M, ONO Y, HIEIDA Y, et al. GNSS fault detection with unmodeled error[J]. Advanced Robotics, 2017, 31(15): 763-779.
    [279]
    LIU Jing, WEI Yan-hui, HAO Sheng-gong. A fault diagnosis method for INS/DVL/USBL integrated navigation system based on support vector regression[C]//IEEE. OCEANS 2019-Marseille. New York: IEEE, 2019: 1-8. .
    [280]
    VAN WYK F, WANG Yi-yang, KHOJANDI A, et al. Real-time sensor anomaly detection and identification in automated vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(3): 1264-1276.
    [281]
    KANAPRAM D T, MARIN-PLAZA P, MARCENARO L, et al. Self-awareness in intelligent vehicles: feature based dynamic Bayesian models for abnormality detection[J]. Robotics and Autonomous Systems, 2020, 134: 103652.
    [282]
    AN J, CHO S. Variational autoencoder based anomaly detection using reconstruction probability[J]. Special Lecture on IE, 2015, 2(1): 1-18.
    [283]
    PANG Guan-song, SHEN Chun-hua, CAO Long-bing, et al. Deep learning for anomaly detection: a review[J]. ACM Computing Surveys, 2021, 54(2): 1-38.
    [284]
    CHI Yuan-fang, DONG Yan-jie, WANG Z J, et al. Knowledge-based fault diagnosis in industrial internet of things: a survey[J]. IEEE Internet of Things Journal, 2022, 9(15): 12886-12900.
    [285]
    KHALASTCHI E, KALECH M. On fault detection and diagnosis in robotic systems[J]. ACM Computing Surveys, 2018, 51(1): 1-24.
    [286]
    SANDOVAL-PILLAJO L, TARUPI A, BASANTES A, et al. Expert system for diagnosis of motor failures in electronic injection vehicles[C]//IEEE. 2019 International Conference on Information Systems and Computer Science (INCISCOS). New York: IEEE, 2019: 259-266.
    [287]
    LIU Lei. Research on intelligent fault diagnosis and testability verification and evaluation methods of equipment[D]. Zhengzhou: Zhengzhou University, 2017. (in Chinese)
    [288]
    DENG Lu, XU Ai-qiang, ZHAO Xiu-li. Allocation plan of samples based on failure attribute in testability demonstration test[J]. Journal of Test and Measurement Technology, 2014, 28(2): 103-107. (in Chinese)
    [289]
    YU Si-qi, JING Bo, HUANG Yi-feng. Study on allocation scheme of failure sample in testability validation tests based on contribution[J]. China Measurement and Test, 2015, 41(2): 91-95. (in Chinese)
    [290]
    LI Tian-mei. Research on optimization design and integrated evaluation of testability verification test for equipments[D]. Changsha: National University of Defense Technology, 2010. (in Chinese)
    [291]
    SHI Jun-you, KANG Rui, TIAN Zhong. Study on sufficiency of sample set in testability demonstration based on information model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(8): 874-878. (in Chinese)
    [292]
    FENG Hao. Research on safety of the intended functionality of perception module for highway pilot system[D]. Changchun: Jilin University, 2022. (in Chinese)
    [293]
    PRⅡSALU M, PIRINEN A, PADURARU C, et al. Generating scenarios with diverse pedestrian behaviors for autonomous vehicle testing[C]//PMLR. Proceedings of the 5th Conference on Robot Learning. New York: PMLR, 2021: 1247-1258.
    [294]
    360 Intelligent and Connected Vehicle Security Laboratory. Analysis on the development trend of intelligent network automobile information security[J]. Intelligent Connected Vehicles, 2020(3): 54-63. (in Chinese)
    [295]
    KIM K, KIM J S, JEONG S, et al. Cybersecurity for autonomous vehicles: review of attacks and defense[J]. Computers and Security, 2021, 103: 102150.
    [296]
    PHAM M, XIONG Kai-qi. A survey on security attacks and defense techniques for connected and autonomous vehicles[J]. Computers and Security, 2021, 109: 102269.
    [297]
    ZHOU Yuan-yuan. Analysis and application of Internet of vehicles information security testing technology[J]. Beijing Automotive Engineering, 2020(2): 23-27. (in Chinese)
    [298]
    LIU Fa-wang, LI Yan-wen. Research on functional safety and safety of the intended functionality for automated driving system[J]. Industrial Technology Innovation, 2021, 8(3): 62-68. (in Chinese)
    [299]
    ZOU Bo-song, ZHU Ke-yi, WANG Hui-jie. Test and analysis of intelligent network automobile information security[J]. Intelligent Connected Vehicle, 2020(6): 56-58. (in Chinese)
  • 加载中

Catalog

    Article Metrics

    Article views (2831) PDF downloads(440) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return