Volume 24 Issue 2
Apr.  2024
Turn off MathJax
Article Contents
ZHAI Geng-wei, TIAN Chun, MA Tian-he, CHEN Chao, WANG Guo-zhuang. New calculation method for anti-skid efficiency based on deceleration envelope correction[J]. Journal of Traffic and Transportation Engineering, 2024, 24(2): 193-206. doi: 10.19818/j.cnki.1671-1637.2024.02.013
Citation: ZHAI Geng-wei, TIAN Chun, MA Tian-he, CHEN Chao, WANG Guo-zhuang. New calculation method for anti-skid efficiency based on deceleration envelope correction[J]. Journal of Traffic and Transportation Engineering, 2024, 24(2): 193-206. doi: 10.19818/j.cnki.1671-1637.2024.02.013

New calculation method for anti-skid efficiency based on deceleration envelope correction

doi: 10.19818/j.cnki.1671-1637.2024.02.013
Funds:

National Natural Science Foundation of China 52072266

China Postdoctoral Science Foundation 2021M702476

More Information
  • Author Bio:

    ZHAI Geng-wei(1999-), male, doctoral student, 2111246@tongji.edu.cn

    TIAN Chun(1977-), female, associate professor, PhD, chtian@tongji.edu.cn

  • Received Date: 2023-10-28
    Available Online: 2024-05-16
  • Publish Date: 2024-04-30
  • To solve the problems of low accuracy and poor evaluation effect of existing anti-skid efficiency calculation methods, based on the in-depth analysis of change rules and characteristics of wheel-rail adhesion coefficient during the train braking anti-skid process, the peak deceleration envelope in the train braking anti-skid process was corrected to make it close to the ideal deceleration curve. Then, a new anti-skid efficiency calculation method was proposed. Combined with the actual working principles of train braking anti-skid systems, a simulation verification platform for the train braking anti-skid efficiency was built. The correctness of the deceleration envelope correction and the accuracy of the new anti-skid efficiency calculation method were verified at the simulation level. The rationalities and the anti-skid performance evaluation effects of six anti-skid efficiency calculation methods were compared and analyzed under different simulation conditions, and the practical applicability of the new method was verified based on the real vehicle anti-skid test. Research results show that the relative errors of braking time and braking distance between the simulation verification platform for train braking anti-skid efficiency and the actual vehicle anti-skid test results are less than 5% under the same condition. Therefore, the platform can be used to verify and analyze the anti-skid efficiency calculation method and the anti-skid performance evaluation effect. The relative error between the corrected peak deceleration envelope and the ideal deceleration curve does not exceed 4.5%. When the anti-skid control strategy remains unchanged, the simulation results of the new anti-skid efficiency calculation method for trains differ by less than 1.1% under different braking levels and adhesion levels. The test results differ by less than 3.5% under the above conditions. The anti-skid efficiencies are all less than 100%. The above results demonstrate good stability of the method. When different anti-skid control strategies are adopted, the simulation results have obvious differences based on the new anti-skid efficiency calculation method, and the corresponding anti-skid efficiencies of different control strategies are positively correlated with their anti-skid performance. The performance differences among different anti-skid systems can be reflected. The new anti-skid efficiency calculation method can calculate the anti-skid efficiency through real vehicle anti-skid tests, providing a new evaluation means of the anti-skid performance for real vehicles.

     

  • loading
  • [1]
    徐传芳, 陈希有, 郑祥, 等. 基于动态面方法的高速列车蠕滑速度跟踪控制[J]. 铁道学报, 2020, 42(2): 41-49. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202002006.htm

    XU Chuan-fang, CHEN Xi-you, ZHENG Xiang, et al. Slip velocity tracking control of high-speed train using dynamic surface method[J]. Journal of the China Railway Society, 2020, 42(2): 41-49. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202002006.htm
    [2]
    邬志伟, 胡用生, 沈钢, 等. 城市轨道车辆牵引、制动与防滑系统的效率研究[J]. 城市轨道交通研究, 1998(2): 32-36. doi: 10.3969/j.issn.1007-869X.1998.02.011

    WU Zhi-wei, HU Yong-sheng, SHEN Gang, et al. Practical study on the efficiency of anti-slip and slide system for metro vehicle[J]. Urban Mass Transit, 1998(2): 32-36. (in Chinese) doi: 10.3969/j.issn.1007-869X.1998.02.011
    [3]
    陈伟, 周军, 王新海, 等. 和谐号动车组制动防滑控制理论和试验[J]. 铁道机车车辆, 2011, 31(5): 32-38. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201105010.htm

    CHEN Wei, ZHOU Jun, WANG Xin-hai, et al. Theory and test of wheel-slide-protection system in brake control of China EMU[J]. Railway Locomotive and Car, 2011, 31(5): 32-38. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201105010.htm
    [4]
    郭强, 车超, 赵扬宇, 等. 城市轨道交通车辆防滑性能评估标准浅析[J]. 现代城市轨道交通, 2018(5): 13-16. https://www.cnki.com.cn/Article/CJFDTOTAL-XDGD201805004.htm

    GUO Qiang, CHE Chao, ZHAO Yang-yu, et al. Analysis of assessment standards for transit vehicle slide protection performance[J]. Modern Urban Transit, 2018(5): 13-16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDGD201805004.htm
    [5]
    胡泽玮. 扭矩法在刹车防滑效率试飞的工程应用[J]. 科技资讯, 2021, 19(9): 76-78. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXLJ202109021.htm

    HU Ze-wei. Engineering application of torque method in flight test of brake anti-slip efficiency[J]. Science and Technology Information, 2021, 19(9): 76-78. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZXLJ202109021.htm
    [6]
    严子林, 肖扬, 陆波. 民机刹车效率计算方法研究[J]. 科技视界, 2017(4): 1-3. doi: 10.3969/j.issn.2095-2457.2017.04.001

    YAN Zi-lin, XIAO Yang, LU Bo. Study on anti-skid system efficiency of civil aircraft[J]. Science and Technology Vision, 2017(4): 1-3. (in Chinese) doi: 10.3969/j.issn.2095-2457.2017.04.001
    [7]
    焦宗夏, 白宁, 刘晓超, 等. 飞机防滑刹车控制技术研究综述[J]. 航空学报, 2022, 43(10): 527384. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202210024.htm

    JIAO Zong-xia, BAI Ning, LIU Xiao-chao, et al. Aircraft anti-skid braking control technology: a review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527384. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202210024.htm
    [8]
    TIAN Chun, ZHAI Geng-wei, GAO Ying-qi, et al. Study on creepage control for PLS-160 wheel-rail adhesion test rig based on LADRC[J]. Sensors, 2023, 23(4): 1792. doi: 10.3390/s23041792
    [9]
    ARIAS-CUEVAS O, LI Z, LEWIS R, et al. Rolling-sliding laboratory tests of friction modifiers in dry and wet wheel-rail contacts[J]. Wear, 2010, 268(3/4): 543-551.
    [10]
    CHANG Chong-yi, CHEN Bo, CAI Yuan-wu, et al. An experimental study of high speed wheel-rail adhesion characteristics in wet condition on full scale roller rig[J]. Wear, 2019, 440/441: 203092. doi: 10.1016/j.wear.2019.203092
    [11]
    常崇义, 陈波, 蔡园武, 等. 基于全尺寸试验台的水介质条件下高速轮轨黏着特性试验研究[J]. 中国铁道科学, 2019, 40(2): 25-32. doi: 10.3969/j.issn.1001-4632.2019.02.04

    CHANG Chong-yi, CHEN Bo, CAI Yuan-wu, et al. Experimental study on adhesion property of high speed wheel and rail in wet condition by full scale roller rig[J]. China Railway Science, 2019, 40(2): 25-32. (in Chinese) doi: 10.3969/j.issn.1001-4632.2019.02.04
    [12]
    LEWIS R, GALLARDO-HERNANDEZ E A, HILTON T, et al. Effect of oil and water mixtures on adhesion in the wheel/rail contact[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2009, 223(3): 275-283. doi: 10.1243/09544097JRRT248
    [13]
    WU Bing, WEN Ze-feng, WU Tao, et al. Analysis on thermal effect on high-speed wheel/rail adhesion under interfacial contamination using a three-dimensional model with surface roughness[J]. Wear, 2016, 366/367: 95-104. doi: 10.1016/j.wear.2016.06.002
    [14]
    CHEN H, BAN T, ISHIDA M, et al. Experimental investigation of influential factors on adhesion between wheel and rail under wet conditions[J]. Wear, 2008, 265(9/10): 1504-1511.
    [15]
    TRUMMER G, BUCKLEY-JOHNSTONE L E, VOLTR P, et al. Wheel-rail creep force model for predicting water induced low adhesion phenomena[J]. Tribology International, 2017, 109: 409-415. doi: 10.1016/j.triboint.2016.12.056
    [16]
    左建勇, 王宗明, 吴萌岭. 地铁列车空气制动系统仿真模型[J]. 交通运输工程学报, 2013, 13(2): 42-47. doi: 10.3969/j.issn.1671-1637.2013.02.006

    ZUO Jian-yong, WANG Zong-ming, WU Meng-ling. Simulation model of air braking system for subway train[J]. Journal of Traffic and Transportation Engineering, 2013, 13(2): 42-47. (in Chinese) doi: 10.3969/j.issn.1671-1637.2013.02.006
    [17]
    朱文良, 吴萌岭, 田春, 等. 基于多学科协同分析的轨道车辆制动系统集成化仿真平台[J]. 交通运输工程学报, 2017, 17(3): 99-110. doi: 10.3969/j.issn.1671-1637.2017.03.011

    ZHU Wen-liang, WU Meng-ling, TIAN Chun, et al. Integrated simulation platform of braking system of rolling stock based on multi-discipline collaborative analysis[J]. Journal of Traffic and Transportation Engineering, 2017, 17(3): 99-110. (in Chinese) doi: 10.3969/j.issn.1671-1637.2017.03.011
    [18]
    左建勇, 任利惠, 吴萌岭. 铁道车辆制动系统防滑控制仿真与试验研究[J]. 同济大学学报(自然科学版), 2010, 38(6): 912-916. doi: 10.3969/j.issn.0253-374x.2010.06.023

    ZUO Jian-yong, REN Li-hui, WU Meng-ling. Simulation and experimental research on anti-sliding control of railway vehicle braking[J]. Journal of Tongji University (Natural Science), 2010, 38(6): 912-916. (in Chinese) doi: 10.3969/j.issn.0253-374x.2010.06.023
    [19]
    PUGI L, MALVEZZI M, ALLOTTAB, et al. A parametric library for the simulation of a Union Internationale des Chemins de Fer (UIC) pneumatic braking system[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2004, 218(2): 117-132. doi: 10.1243/0954409041319632
    [20]
    BARNA G. Simulation based design of fuzzy wheel slide protection controller for rail vehicles[C]//IEEE. 15th International Conference on Methods and Models in Automation and Robotics. New York: IEEE, 2010: 186-191.
    [21]
    KIM H Y, LEE N J, LEE D C, et al. Hardware-in-the-loop simulation for a wheel slide protection system of a railway train[J]. IFAC Proceedings Volumes, 2014, 47(3): 12134-12139. doi: 10.3182/20140824-6-ZA-1003.02106
    [22]
    ZUO Jian-yong, CHEN Zhong-kai. Antiskid control of railway train braking based on adhesion creep behavior[J]. Chinese Journal of Mechanical Engineering, 2012, 25(3): 543-549. doi: 10.3901/CJME.2012.03.543
    [23]
    朱文良, 周嘉俊, 孔靖森, 等. 动车组制动防滑控制建模仿真与试验研究[J]. 城市轨道交通研究, 2020, 23(12): 50-55. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT202012012.htm

    ZHU Wen-liang, ZHOU Jia-jun, KONG Jing-sen, et al. Modeling simulation and testing research of anti-skid control of EMU braking[J]. Urban Mass Transit, 2020, 23(12): 50-55. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT202012012.htm
    [24]
    HAMON G, RUSHBY J. An operational semantics for Stateflow[J]. International Journal on Software Tools for Technology Transfer, 2007, 9(5): 447-456.
    [25]
    陈哲明, 曾京, 罗仁. 列车空气制动防滑控制及其仿真[J]. 铁道学报, 2009, 31(4): 25-31. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200904007.htm

    CHEN Zhe-ming, ZENG Jing, LUO Ren. Wheel-slip prevention control and simulation under train pneumatic braking[J]. Journal of the China Railway Society, 2009, 31(4): 25-31. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200904007.htm
    [26]
    TRAN M T, ANG K K, LUONG V H, et al. High-speed trains subject to abrupt braking[J]. Vehicle System Dynamics International Journal of Vehicle Mechanics, and Mobility, 2016, 54(12): 1715-1735.
    [27]
    朱文良, 郑树彬, 吴娜, 等. 适用于制动工况下的轮轨低黏着改进模型[J]. 铁道学报, 2021, 43(3): 34-41. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202103006.htm

    ZHU Wen-liang, ZHENG Shu-bin, WU Na, et al. Improved model for degraded wheel-rail adhesion under braking conditions[J]. Journal of the China Railway Society, 2021, 43(3): 34-41. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202103006.htm
    [28]
    POLACH O. A fast wheel-rail forces calculation computer code[J]. Vehicle System Dynamics, 1999, 33(S1): 728-739.
    [29]
    POLACH O. Creep forces in simulations of traction vehicles running on adhesion limit[J]. Wear, 2005, 258(7/8): 992-1000.
    [30]
    SPIRYAGIN M, POLACH O, COLE C. Creep force modelling for rail traction vehicles based on the Fastsim algorithm[J]. Vehicle System Dynamics, 2013, 51(11): 1765-1783.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (298) PDF downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return