Volume 24 Issue 3
Jun.  2024
Turn off MathJax
Article Contents
WANG Xiao-wei, ZHANG Yi-ming, WANG Xing-wei, REN Jia-xing, YANG Xu, WONG Yiik-diew, WANG Hai-nian. Adhesion/cohesion failure behavior of porous asphalt concrete considering mortar random distribution[J]. Journal of Traffic and Transportation Engineering, 2024, 24(3): 139-153. doi: 10.19818/j.cnki.1671-1637.2024.03.009
Citation: WANG Xiao-wei, ZHANG Yi-ming, WANG Xing-wei, REN Jia-xing, YANG Xu, WONG Yiik-diew, WANG Hai-nian. Adhesion/cohesion failure behavior of porous asphalt concrete considering mortar random distribution[J]. Journal of Traffic and Transportation Engineering, 2024, 24(3): 139-153. doi: 10.19818/j.cnki.1671-1637.2024.03.009

Adhesion/cohesion failure behavior of porous asphalt concrete considering mortar random distribution

doi: 10.19818/j.cnki.1671-1637.2024.03.009
Funds:

National Key Research and Development Program of China 2021YFB2601000

National Natural Science Foundation of China 52008333

Open Fund Project of State Key Laboratory of High Performance Civil Engineering Materials 2023CEM006

More Information
  • Author Bio:

    WANG Xiao-wei(1990-), male, associate professor, PhD, xwwang@xauat.edu.cn

    WANG Hai-nian(1977-), male, professor, PhD, wanghn@chd.edu.cn

  • Received Date: 2024-01-23
    Available Online: 2024-07-18
  • Publish Date: 2024-06-30
  • A meso-scale finite element modeling method for incorporating the random distribution of mortar was proposed to obtain a more realistic adhesion/cohesion failure behavior of porous asphalt concrete (PAC). The actual meso-structure and mortar distribution of PAC were quantified by using X-ray CT scanning and image processing technology, and the random distribution characteristics of mortar were evaluated. The adhesion/cohesion properties of mortars with different thicknesses were evaluated by pull-off test that can accurately control the thickness of mortar, and the cohesive zone model parameters corresponding to different thicknesses of mortar were determined. Zero-thickness cohesive elements were embedded at the mortar-aggregate interface and within the mortar, and corresponding model parameters were assigned to the cohesive elements based on the mortar thicknesses in different regions of PAC. Finally, a meso-scale finite element model considering mortar random distribution (Model A) was built to study the meso-scale evolution process of PAC adhesion/cohesion failure behaviors. Research results indicate that it is recommended to divide the specimens into 36 parts to characterize the random distribution characteristics of mortar. Mortar thickness has significant influences on PAC adhesion/cohesion properties, failure modes, and cohesive zone model parameters. Adhesion failure is observed when the mortar thickness is less than 0.9 mm or between 1.2-1.8 mm, while adhesion-cohesion mixed failure occurs when mortar thickness exceeds 1.9 mm, and other mortar thicknesses result in cohesion failure. Adhesion/cohesion strength increases with increasing mortar thickness in the same failure mode. Compared with the meso-scale finite element model without considering mortar random distribution (Model B), the crack initiation points of Model A and Model B are both adhesion failures, but failure locations are different. Model B primarily exhibits a single adhesion failure, while Model A demonstrates multiple adhesion/cohesion failure behaviors, which is more consistent with field complex adhesion/cohesion failure behaviors. The random distribution of mortar has significant influences on the adhesion/cohesion failure process, stress distribution, and crack propagation of PAC. Therefore, considering the random distribution of mortar can more accurately identify the weakest position of PAC adhesion/cohesion failure, and increasing the mortar thickness can delay the evolution of adhesion/cohesion failure.

     

  • loading
  • [1]
    WANG Xiao-wei, GU Xing-yu, HU Xin-yu, et al. Three-stage evolution of air voids and deformation of porous-asphalt mixtures in high-temperature permanent deformation[J]. Journal of Materials in Civil Engineering, 2020, 32(9): 4020233. doi: 10.1061/(ASCE)MT.1943-5533.0003300
    [2]
    WANG Xiao-wei, HU Xin-yu, GU Xing-yu, et al. Microstructure and damage evolution of porous asphalt mixtures under coupled effects of high temperature and moisture[J]. International Journal of Pavement Engineering, 2023, 24(1): 1-15.
    [3]
    CANESTRARI F, CARDONE F, GRAZIANI A, et al. Adhesive and cohesive properties of asphalt-aggregate systems subjected to moisture damage[J]. Road Materials and Pavement Design, 2010, 11(S1): 11-32.
    [4]
    LIU Ya-wen, APEAGYEI A, AHMAD N, et al. Examination of moisture sensitivity of aggregate-bitumen bonding strength using loose asphalt mixture and physico-chemical surface energy property tests[J]. International Journal of Pavement Engineering, 2014, 15(7): 657-670. doi: 10.1080/10298436.2013.855312
    [5]
    张恺, 罗蓉, 张德润. 基于表面自由能理论的彩色树脂类沥青材料润湿性分析[J]. 中国公路学报, 2016, 29(5): 34-40. doi: 10.3969/j.issn.1001-7372.2016.05.005

    ZHANG Kai, LUO Rong, ZHANG De-run. Wettability analysis on colored resin asphalt binder based on surface free energy theory[J]. China Journal of Highway and Transport, 2016, 29(5): 34-40. (in Chinese) doi: 10.3969/j.issn.1001-7372.2016.05.005
    [6]
    罗蓉, 郑松松, 张德润, 等. 基于表面能理论的沥青与集料黏附性能评价[J]. 中国公路学报, 2017, 30(6): 209-214. doi: 10.3969/j.issn.1001-7372.2017.06.003

    LUO Rong, ZHENG Song-song, ZHANG De-run, et al. Evaluation of adhesion property in asphalt-aggregate systems based on surface energy theory[J]. China Journal of Highway and Transport, 2017, 30(6): 209-214. (in Chinese) doi: 10.3969/j.issn.1001-7372.2017.06.003
    [7]
    APEAGYEI A K, GRENFELL J R A, AIREY G D. Moisture-induced strength degradation of aggregate-asphalt mastic bonds[J]. Road Materials and Pavement Design, 2014, 15(S1): 239-262.
    [8]
    HUANG Wei-dong, LYU Quan, XIAO Fei-peng. Investigation of using binder bond strength test to evaluate adhesion and self-healing properties of modified asphalt binders[J]. Construction and Building Materials, 2016, 113: 49-56. doi: 10.1016/j.conbuildmat.2016.03.047
    [9]
    CHATURABONG P, BAHIA H U. Effect of moisture on the cohesion of asphalt mastics and bonding with surface of aggregates[J]. Road Materials and Pavement Design, 2018, 19(3): 741-753. doi: 10.1080/14680629.2016.1267659
    [10]
    ZHANG Heng-ji, LI Hui, ZHANG Yi, et al. Performance enhancement of porous asphalt pavement using red mud as alternative filler[J]. Construction and Building Materials, 2018, 160: 707-713. doi: 10.1016/j.conbuildmat.2017.11.105
    [11]
    CAI Jun, WEN Yong, WANG Di, et al. Investigation on the cohesion and adhesion behavior of high-viscosity asphalt binders by bonding tensile testing apparatus[J]. Construction and Building Materials, 2020, 261: 120011. doi: 10.1016/j.conbuildmat.2020.120011
    [12]
    WANG Xiao-wei, REN Jia-xing, GU Xing-yu, et al. Investigation of the adhesive and cohesive properties of asphalt, mastic, and mortar in porous asphalt mixtures[J]. Construction and Building Materials, 2021, 276: 122255. doi: 10.1016/j.conbuildmat.2021.122255
    [13]
    黄云涌, 刘朝晖, 李宇峙. 沥青混合料水稳性试验方法[J]. 交通运输工程学报, 2002, 2(2): 19-22. doi: 10.3321/j.issn:1671-1637.2002.02.005

    HUANG Yun-yong, LIU Zhao-hui, LI Yu-zhi. Method of asphalt mixture immersion stability test[J]. Journal of Traffic and Transportation Engineering, 2002, 2(2): 19-22. (in Chinese) doi: 10.3321/j.issn:1671-1637.2002.02.005
    [14]
    ALVAREZ A E, EPPS-MARTIN A, ESTAKHRI C, et al. Evaluation of durability tests for permeable friction course mixtures[J]. International Journal of Pavement Engineering, 2010, 11(1): 49-60. doi: 10.1080/10298430902730539
    [15]
    严超, 魏显权, 方杨. 沥青混合料水稳定性能评价方法研究[J]. 公路, 2019, 64(10): 29-33. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201910006.htm

    YAN Chao, WEI Xian-quan, FANG Yang. Study of evaluation methods for water stability performance of asphalt mixture[J]. Highway, 2019, 64(10): 29-33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201910006.htm
    [16]
    周璐, 黄卫东, 吕泉, 等. 不同改性剂对沥青黏结及抗水损害性能的影响[J]. 建筑材料学报, 2021, 24(2): 377-384. doi: 10.3969/j.issn.1007-9629.2021.02.021

    ZHOU Lu, HUANG Wei-dong, LYU Quan, et al. Effects of various modifiers on the bond property and moisture damage resistance of asphalt[J]. Journal of Building Materials, 2021, 24(2): 377-384. (in Chinese) doi: 10.3969/j.issn.1007-9629.2021.02.021
    [17]
    XU Hui-ning, GUO Wei, TAN Yi-qiu. Internal structure evolution of asphalt mixtures during freeze-thaw cycles[J]. Materials and Design, 2015, 86: 436-446. doi: 10.1016/j.matdes.2015.07.073
    [18]
    HU Xin-yu, WANG Xiao-wei, ZHENG Nan-xiang, et al. Experimental investigation of moisture sensitivity and damage evolution of porous asphalt mixtures[J]. Materials, 2021, 14(23): 7151. doi: 10.3390/ma14237151
    [19]
    CUI Pei-de, WU Shao-peng, XIAO Yue, et al. 3D reconstruction of moisture damage resulted volumetric changes in porous asphalt mixture[J]. Construction and Building Materials, 2019, 228: 116658. doi: 10.1016/j.conbuildmat.2019.08.039
    [20]
    OMRANIAN S R, HAMZAH M O, YEE T S, et al. Effects of short-term ageing scenarios on asphalt mixtures' fracture properties using imaging technique and response surface method[J]. International Journal of Pavement Engineering, 2020, 21(11): 1374-1392. doi: 10.1080/10298436.2018.1546007
    [21]
    JIANG Ji-wang, LI Ying, ZHANG Yuan, et al. Distribution of mortar film thickness and its relationship to mixture cracking resistance[J]. International Journal of Pavement Engineering, 2022, 23(3): 824-833. doi: 10.1080/10298436.2020.1774767
    [22]
    BARENBLATT G I. The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks[J]. Journal of Applied Mathematics and Mechanics, 1959, 23(3): 622-636. doi: 10.1016/0021-8928(59)90157-1
    [23]
    XU X P, NEEDLEMAN A. Numerical simulations of fast crack growth in brittle solids[J]. Journal of the Mechanics and Physics of Solids, 1994, 42(9): 1397-1434. doi: 10.1016/0022-5096(94)90003-5
    [24]
    ESPINOSA H D, ZAVATTIERI P D. A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials. Part Ⅰ: theory and numerical implementation[J]. Mechanics of Materials, 2003, 35(3/4/5/6): 333-364.
    [25]
    MO L T, HUURMAN M, WOLDEKIDAN M F, et al. Investigation into material optimization and development for improved ravelling resistant porous asphalt concrete[J]. Materials and Design, 2010, 31(7): 3194-3206. doi: 10.1016/j.matdes.2010.02.026
    [26]
    HOSSAIN M I, TAREFDER R A. Quantifying moisture damage at mastic-aggregate interface[J]. International Journal of Pavement Engineering, 2014, 15(2): 174-189. doi: 10.1080/10298436.2013.812212
    [27]
    WANG Hao, WANG Jian, CHEN Jia-qi. Micromechanical analysis of asphalt mixture fracture with adhesive and cohesive failure[J]. Engineering Fracture Mechanics, 2014, 132: 104-119. doi: 10.1016/j.engfracmech.2014.10.029
    [28]
    FAN Ze-peng, DU Cong, LIU Peng-fei, et al. Study on interfacial debonding between bitumen and aggregate based on micromechanical damage model[J]. International Journal of Pavement Engineering, 2020, 23(2): 340-348.
    [29]
    BEKELE A, BALIEU R, JELAGIN D, et al. Micro-mechanical modelling of low temperature-induced micro-damage initiation in asphalt concrete based on cohesive zone model[J]. Construction and Building Materials, 2021, 286: 122971. doi: 10.1016/j.conbuildmat.2021.122971
    [30]
    MANRIQUE-SANCHEZ L, CARO S, ARÁMBULA-MERCADO E. Numerical modelling of ravelling in porous friction courses (PFC)[J]. Road Materials and Pavement Design, 2018, 19(3): 668-689. doi: 10.1080/14680629.2016.1269661
    [31]
    郭志栋, 李得健, 陈维斌, 等. 基于细观孔隙结构的排水沥青混合料劈裂损伤分析[J]. 兰州工业学院学报, 2022, 29(2): 18-24. https://www.cnki.com.cn/Article/CJFDTOTAL-LZGD202202004.htm

    GUO Zhi-dong, LI De-jian, CHEN Wei-bin, et al. Splitting damage analysis of drainage asphalt mixture based on micropore structure[J]. Journal of Lanzhou Institute of Technology, 2022, 29(2): 18-24. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LZGD202202004.htm
    [32]
    ZHANG Hao-peng, DING Hai-bo, RAHMAN A. Effect of asphalt mortar viscoelasticity on microstructural fracture behavior of asphalt mixture based on cohesive zone model[J]. Journal of Materials in Civil Engineering, 2022, 34(7): 0004277.
    [33]
    赵晓康, 董侨, 肖源杰, 等. 基于细观非均质模型的水稳碎石基层材料疲劳开裂研究[J]. 中南大学学报(自然科学版), 2021, 52(9): 3132-3142. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202109015.htm

    ZHAO Xiao-kang, DONG Qiao, XIAO Yuan-jie, et al. Fatigue cracking of cement-eated composites with mesoscale heterogeneous model[J]. Journal of Central South University (Science and Technology), 2021, 52(9): 3132-3142. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202109015.htm
    [34]
    WANG Ya-bo, ZHANG Hai-tao, ZHAO Qi. Micro-structural analysis on stress displacement and crack evolution of porous asphalt mixture based on DEM[J]. Materials Research Express, 2021, 8(6): 065102.
    [35]
    KOSE S, GULER M, BAHIA H U, et al. Distribution of strains within hot-mix asphalt binders: applying imaging and finite-element techniques[J]. Transportation Research Record, 2000, 1728(1): 21-27.
    [36]
    SEDGHI R, REZAEI LORI A, BOKAEI A, et al. Evaluating the bond strength and work of fracture of bituminous mastic using the taguchi method[J]. International Journal of Pavement Engineering, 2021, 22(10): 1318-1333.
    [37]
    SONG S H, PAULINO G H, BUTTLAR W G. A bilinear cohesive zone model tailored for fracture of asphalt concrete considering viscoelastic bulk material[J]. Engineering Fracture Mechanics, 2006, 73(18): 2829-2848.
    [38]
    SCHULTZ R A. Brittle strength of basaltic rock masses with applications to Venus[J]. Journal of Geophysical Research: Planets, 1993, 98(E6): 10883-10895.
    [39]
    ROQUE R, KOH C, CHEN Y, et al. Introduction of fracture resistance to the design and evaluation of open graded friction courses in Florida[R]. Tallahassee: Florida Department of Transportation, 2009.
    [40]
    MO Lian-tong, HUURMAN M, WU Shao-peng, et al. Ravelling investigation of porous asphalt concrete based on fatigue characteristics of bitumen-stone adhesion and mortar[J]. Materials and Design, 2009, 30(1): 170-179.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (182) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return